跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建財
研究生(外文):Chien-Tsai Huang
論文名稱:運動排汗對尿液尿酸排泄之影響
論文名稱(外文):The Effects of Sweating Induced by Exercise on Urinary Uric Acid Excretion
指導教授:毛義方毛義方引用關係陳美蓮陳美蓮引用關係
指導教授(外文):I-Fang MaoMei-Lien Chen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:公共衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:105
中文關鍵詞:大量流汗尿酸排泄尿酸清除率
外文關鍵詞:profuse sweatinguric acid excretionuric acid clearance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:2728
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:2
尿酸為人類核苷嘌呤類的代謝產物。高尿酸血症可定義為血清尿酸鹽濃度大於420μmol/L。人體血清尿酸鹽濃度高於420μmol/L,發作痛風與尿結石的危險增加,且危險隨著尿酸鹽濃度的上升而增強。本研究主要的研究目的為探討人體汗液排除尿酸的效率與運動的大量流汗對尿液尿酸排泄的影響;以明瞭大量流汗導致血清尿酸變化的作用機轉。
為了明瞭流汗是否可以減低血液中尿酸的濃度,本研究先測定汗液中尿酸的濃度。這部分的研究收集了16位男性自願者在密集運動一小時後再熱暴露的汗液。結果顯示汗液中尿酸濃度為25μmol/L,其僅佔血清中尿酸濃度的6.3%。此結果也顯示汗液中尿酸的濃度是非常微少的,且估計在正常的生理範圍內,經由汗液排泄的尿酸量,不足以高到使我們認為流汗是排泄尿酸的重要途徑。本部分的研究結果暗示,想藉由大量流汗來降低血清中尿酸濃度,是不可行的。
為了進一步探討運動所引起的大量流汗是否導致尿液中尿酸排泄的減少,本研究模擬一般羽球運動選手運動訓練的情況,測定其在研究期間尿液、汗液及血液中的尿酸。此研究徵募了13位經常從事羽球運動的男性自願者為研究對象,他們於7天研究期間的前2天和後2天無從事任何導致明顯流汗的運動和活動,而他們於研究期間的第3天到第5天下午則接受2小時的例行訓練和模擬比賽。依實驗的設計,本研究收集7位經隨機分配的自願者汗液、血清和尿液的檢體,也測定其他6位經隨機分配的自願者尿酸和肌酸酐的清除率。結果顯示13位自願者在有運動訓練的第4天,其平均血清尿酸濃度顯著地上升,比無運動訓練第2天的平均血清尿酸濃度增加了18.2% (p< 0.05)。而7位研究對象在有運動訓練的3天,其平均10小時尿液尿酸排泄量,比運動訓練前兩天與後兩天的平均10小時尿液尿酸排泄量,分別顯著減少了178.5μmol/day和118.3μmol/day(p< 0.05)。而估計他們估計於3個運動訓練日,經由汗液流失的尿酸量為 46.7±5.1μmol/day。因運動而大量流汗流失的尿酸量,僅佔其10小時尿液尿酸排泄減少量的26.2%和39.5%。而另外6位受試者於研究期間第2天,尿酸平均清除率為肌酸酐平均清除率的6.58%,而到有運動訓練的第4天,尿酸平均清除率對肌酸酐平均清除率之比例則顯著地降至5.42%(p<0.05)。根據這些結果推論,引起大量流汗類型的運動,會導致人體運動後尿液尿酸排泄的減少,並使血清尿酸濃度有增加的現象。而運動時有效腎臟血漿流量的減少,大量流汗流失的許多鈉離子,和血液中乳酸鹽濃度的增加,是導致尿液尿酸排泄降低的決定因素。
總之,大量流汗會降低尿液尿酸的排泄,因此會增加罹患高尿酸血症的機會。生活環境中有大量流汗現象的人,宜注意此一現象。而對必須從事大量流汗運動的人,飲用足夠和適當的流體是相當重要的。
Uric acid is the major product of the catabolism of the purine nucleotides in humans. Hyperuricemia may be defined as a serum urate concentration greater than 420μmol/L. People with a urate level greater than 420μmol/L may experience an elevated risk of gout or urolithiasis, and such risk shows a dose-response pattern. The study aims to investigate how effective the uric acid can be excreted by sweating, in particular the profuse sweating following the strenuous exercise. The results from the study may help figure out how the exercise induced sweating can vary serum uric acid in humans.
The prior study was to determine the concentrations of uric acid in sweat. Concentrations of uric acid were measured in the sweat of sixteen male volunteers, who were exposed to external heat after one hour of strenuous physical exercise. The results show that the concentration of uric acid in the sweat is 25μmol/L , which is only 6.3% of that in serum. The data suggest a small amount of uric acid that can be traced in the sweat, which is also insignificant within the normal physiological range of daily uric acid excretion by sweating. The results imply that sweating does not present considerable effects on the reduction of serum uric acid.
To further assess whether exercise induced profuse sweating may reduce urinary uric acid excretion, the study simulated badminton players training and determined the concentrations of uric acid in the urine, sweat and blood of the 13 male players who were all volunteers. During a 7-day study period, the study subjects attended no exercise on the first and the last 2 days, but they were present daily for a 2-hour training program for the rest of 3 days. According the study design, 7 study subjects were randomly assigned in one group for which the uric acid in the sweat, blood, and urine will be determined separately. On the other hand, the clearance rates of both urate and creatinine were estimated in the 6 subjects randomly assigned in the other group. Compared with the mean value determined at the second day, the mean serum uric acid of the 13 subjects significantly increased 18.2% on the 4th day(p<0.05). In the group of 7 subjects, the mean 10-hours urinary uric acid determined on the training period was significantly lower than those determined from the preceding and subsequent days of the training days, by 178.5μmol/day and 118.3μmol/day, respectively(p<0.05). The mean uric acid excreted by sweating was calculated to be 46.7±5.1μmol/day on the training period, which was only 26.2% and 39.5% of the difference in mean 10-hour urinary uric acid between the training period and the two non-training periods. For the 6 subjects in the other group, the mean ratio of clearance rate of uric acid to that of creatinine was 6.6% on the second day, which significantly decreased to 5.4% on the 4th day(p<0.05). It is concluded that exercise induced profuse sweating result in a reduced excretion of urinary uric acid and lead to a rise in serum uric acid. The exercise induced reduction of renal plasma flow, sodium loss by profuse sweating, and increased blood lactate are all possible contributors to a reduced excretion of urinary uric acid.
In summary, profuse sweating reduces excretion of urinary uric acid and subsequently increases the risk of hyperuricemia. People who sweat profusely in their daily life should be aware of this, and are strongly recommended adequate fluid supplement after sweating.
目錄 Ⅰ
表目錄 Ⅳ
圖目錄 Ⅴ
摘要 Ⅶ
Abstract Ⅸ
運動排汗對尿液尿酸排泄之影響 1
第一章 前言 1
第一節 研究背景 1
第二節 研究目的 3
第二章 文獻探討 4
第一節 汗液的分泌與汗中的尿酸 4
第二節 尿酸測定的方法 5
第一篇 人體汗液中尿酸濃度之研究 9
摘要 10
Abstract 11
第一章 前言 12
第一節 研究背景 12
第二節 研究目的 13
第二章 材料與方法 14
第一節 材料 14
一、試劑 14
二、器材 14
三、儀器 15
第二節 方法 15
一、研究對象 15
二、研究樣本的收集 15
三、代謝物的分析方法 16
四、統計分析 19
第三章 結果 20
一、研究對象的特徵 20
二、汗液、尿液和血清中尿酸等代謝物的濃度 20
三、汗液和血清中尿酸等代謝物的關係與比較 20
第四章 討論 22
一、汗液中的尿酸 22
二、汗液中的肌酸酐與尿素 23
三、汗液和血清中代謝分析物的關係 24
四、汗液中的鈉、鉀和氯 24
五、結論 25
第二篇 運動的大量流汗對尿液尿酸排泄的影響 35
摘要 36
Abstract 37
第一章 前言 39
第一節 研究背景 39
第二節 研究目的 40
第二章 材料與方法 41
第一節 材料 41
一、試劑 41
二、器材 41
三、儀器 41
第二節 方法 42
一、研究對象 42
二、實驗條件 42
三、研究樣本的收集 43
四、體重的測量與估計汗液排出的尿酸量 44
五、尿酸和肌酸酐的清除率 44
六、檢體中代謝物的分析方法 45
七、統計分析 45
第三章 結果 46
一、血清尿酸濃度的變化 46
二、運動時汗液尿酸的排泄量 46
三、尿液尿酸排泄量與尿量的變化 46
四、尿酸和肌酸酐清除率的變化 47
第四章 討論 49
一、運動的大量流汗減少尿酸的排泄 49
二、大量流汗流失的鈉離子對尿酸排泄的影響 50
三、乳酸鹽對尿酸排泄的影響 51
四、運動對尿酸生成的影響 51
五、人體對運動後高尿酸血症的適應 52
六、大量流汗運動後高尿酸血症的預防 52
七、結論 53
參考文獻 73
附錄 台灣常見市售酒精性飲料嘌呤含量之探討 82
表目錄
表 1-1 十六位自願參與實驗者身體狀況的基本特徵 26
表 1-2 汗中尿酸與相關代謝物測定之精密度 27
表 1-3 汗中尿酸與相關代謝物測定之回收率 28
表 1-4 汗、尿與血清中尿酸等分析物之濃度 29
表 2-1 十三位研究對象於研究期間血清尿酸濃度 54
表 2-2 七位研究對象於運動訓練後體重減少與估計汗液尿酸排泄
量 55
表 2-3 六位研究對象於研究期間尿酸和肌酸酐的清除率 56
圖目錄
圖1 人體皮膚與汗腺之解剖構造圖 7
圖2 人體汗腺構造與汗液分泌圖 8
圖1-1 三種人體常見含氮代謝物的結構式 30
圖1-2 人體汗液尿酸濃度與血清尿酸濃度散佈圖 31
圖1-3 人體汗液尿素濃度與血清尿素濃度散佈圖 32
圖1-4 尿酸等六個代謝物在汗液中濃度為其在血清中濃度的比較
圖 33
圖1-5 尿酸等六個代謝物在尿液中濃度為其在血清中濃度的比較
圖 34
圖2-1 十三位研究對象(A,B,C,D,E,F,G,H,I,J,K,L,M)於研究期間血
清尿酸濃度變化圖 57
圖2-2 研究對象A連續7天每天10小時個人尿液尿酸排泄量和有
運動訓練3天估計汗液尿酸排泄量之比較圖 58
圖2-3 研究對象B連續7天每天10小時個人尿液尿酸排泄量和有
運動訓練3天估計汗液尿酸排泄量之比較圖 59
圖2-4 研究對象C連續7天每天10小時個人尿液尿酸排泄量和有
運動訓練3天估計汗液尿酸排泄量之比較圖 60
圖2-5 研究對象D連續7天每天10小時個人尿液尿酸排泄量和有
運動訓練3天估計汗液尿酸排泄量之比較圖 61
圖2-6 研究對象E連續7天每天10小時個人尿液尿酸排泄量和有
運動訓練3天估計汗液尿酸排泄量之比較圖 62
圖2-7 研究對象F連續7天每天10小時個人尿液尿酸排泄量和有
運動訓練3天估計汗液尿酸排泄量之比較圖 63
圖2-8 研究對象G連續7天每天10小時個人尿液尿酸排泄量和有
運動訓練3天估計汗液尿酸排泄量之比較圖 64
圖2-9 七位研究對象連續7天每天10小時平均尿液尿酸排泄量和
有運動訓練3天估計汗液平均尿酸排泄量之比較圖 65
圖2-10 研究對象H於3個不同的研究日每次20分鐘尿液尿酸清除
率對肌酸酐清除率之比例比較圖 66
圖2-11 研究對象I於3個不同的研究日每次20分鐘尿液尿酸清除
率對肌酸酐清除率之比例比較圖 67
圖2-12 研究對象J於3個不同的研究日每次20分鐘尿液尿酸清除
率對肌酸酐清除率之比例比較圖 68
圖2-13 研究對象K於3個不同的研究日每次20分鐘尿液尿酸清除
率對肌酸酐清除率之比例比較圖 69
圖2-14 研究對象L於3個不同的研究日每次20分鐘尿液尿酸清除
率對肌酸酐清除率之比例比較圖 70
圖2-15 研究對象M於3個不同的研究日每次20分鐘尿液尿酸清除
率對肌酸酐清除率之比例比較圖 71
圖2-16 六位研究對象於3個不同的研究日每次20分鐘尿液尿酸平
均清除率對肌酸酐平均清除率之比例比較圖 72
1.Terkeltaub RA. Gout and hyperuricemia. In: Stein JH, Hutton JJ, Kohler PO et al., eds. Internal Medicine. 4th ed. Missouri: Mosby-Year,1994;2494-504.
2.Nuki G. Disorders of purine and pyrimidine metabolism. In: Weatherall DJ, Ledingham JGG, Warrell DA, eds. Oxford Textbook of Medicine. 3rd ed. New York: Oxford University Press, 1996;1376-88.
3.Wortmann RL. Gout and other disorders of purine metabolism. In: Fauci AS, Martin Jb, Braunwald E et al., eds. Harrison''s Principle of Internal Medicine. 14th ed. New York: McGraw-Hill,1998;2158-66.
4.Lobe JN. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum 1972;15:189-92.
5.Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyper- uricemia. Risk and consequence in the Normative Aging Study. Am J Med 1987;82:421-6.
6.賴守志、朱有仁、郭濟芳、車參莉、吳盧稔:宜蘭縣東澳里及東岳村高尿酸血症調查。疫情報導 1991;10:99-105。
7.黃建財、黃麗玲、劉青山:宜蘭東岳社區痛風患者飲食習慣與行為特性調查。中華營誌 2000;25;62-72.
8.Chang SJ, Ko YC, Wang TN, Chang FT, Cinkotai FF, Chen CJ. High prevalence of gout and related risk factors in Taiwan''s aborigines. J Rheumatol 1997;24:1364-9.
9.Chou CT, Lai JS. The epidemiology of hyperuricaemia and gout in Taiwan aborigines. Br J Rheumatol 1998;37:258-62.
10.Kelley WN, Palella TD. Gout and other disorders of purine metabolism. In: Wilson JD, Barunwald E, Isselbacher KJ et al., eds. Harrison''s Principle of Internal Medicine. 12th ed. New York: McGraw-Hill,1991;1834-42.
11.Hadano S, Ogasawara M, Ito A. Mechanism of exercise- induced hyperuricemia. Nippon Seirigaku Zasshi 1987;49:151-9.
12.Kono N, Mineo I, Shimizu T, Hara N, Yamada Y, Nonaka K, Tarui S. Increased plasma uric acid after exercise in muscle phosphofructokinase deficiency. Neurology 1986;36:106-8.
13.西岡久壽樹、井上和彥、御巫清允:筋運動によゐ高尿酸血症によいて。尿酸 1977;1:49。
14.Montoye HJ, Howard GE, Wood JH. Observations of some hemochemical and anthropometric measurements in athletes. J Sports Med Phys Fitness 1967;7:35-44.
15.Guyton AC, Hall JE. Human Physiology and Mechanisms of Disease. 6th ed. Philadelphia: W.B. Saunders,1997;201-11.
16.Brul D, Sarwar G, Savoie L. Changes in serum and urinary uric acid levels in normal human subjects fed purine-rich foods containing different amounts of adenine and hypoxanthine. J Am Coll Nutr 1992;11:353-8.
17.Cleland LG, Hill CL, James MJ. Diet and arthritis. Baillieres Clin Rheumatol 1995;9:771-85.
18.Newcombe DS. Ethanol metabolism and uric acid. Meta- bolism 1972;21:1193.
19.Yamanaka H. Alcohol ingestion and hyperuricemia. Nippon Rinsho 1996;54:3369-73.
20.Faller J, Fox I. Ethanol-induced hyperuricemia: evidence for increased urate production by activation of adenine nucleotide turnover. N Engl J Med 1982;307:1598-602.
21.Gibson T, Rodger AV, Simmonds HA, Toseland P. Beer drinking and its effect on uric acid. Br J Rheumatol 1984;23: 203-9.
22.Eastmond CJ, Garton M, Robins S, Riddoch S. The effects of alcoholic beverages on urate metabolism in gout suffers. Br J Rheumatol 1995;34:756-9.
23.Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 1989;20:537-63.
24.Sato K. The physiology, pharmacology, and biochemistry of the eccrine sweat gland. Rev Physiol Biochem Pharmacol 1977; 79:51-131.
25.Van Scott EJ, Yu RJ. Control of keratinization with alpha -hydroxy acids and related compounds. I. Topical treatment of ichthyotic disorders. Arch Dermatol 1974;110: 586-90.
26.Tortoba GJ. Principles of Human Anatomy. 3rd ed. New York: Harper & Row,1983;85.
27.Fellmann N, Labbe A, Gachon AM, Coudert J. Thermal sweat lactate in cystic fibrosis and in normal children. Eur J Appl Physiol 1985;54:511-6.
28.Garden JW. Plasma and sweat histamine concentrations after heat exposure and physical exercise. J Appl Physiol 1966; 21:631-5.
29.Mangos JA. Transductal fluxes of Na, K and water in the human eccrine sweat glands. Am J Physiol 1973;224:1235-40.
30.Sato K, Sato F. Nonisotonicity of simian eccrine primary sweat induced in vitro. Am J Physiol 1987;252:1099-105.
31.Taylor RP, Polliack AA, Bader DL. The analysis of metabolites in human sweat: analytical methods and potential application to investigation of pressure ischaemia of soft tissues. Ann Clin Biochem 1994;31:18-24.
32.Al-Tamer YY, Hadi EA, Al-Badrani II. Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urol Res 1997;25:337-40.
33.Mugler A. Gout and the excretion of uric acid in sweat. Rev Rhum Mal Osteoartic 1970;37:389-92.
34.Whelton A, Watson AJ, Rock RC. Nitrogen metabolites and renal function. In: Burtis CA, Ashwood ER, eds. Clincal Chemistry. 2nd ed. Philadelphia: Saunder,1994;1513-75.
35.Price CP, James DR. Analytical reviews in clinical bio- chemistry: the measurement of urate. Ann Clin Biochem 1988; 25:484-98.
36.Duncan PH, Gochman N, Cooper T, Smith E, Bayse D. A candidate reference method for uric acid in serum. I. Optimization and evaluation. Clin Chem 1982;28:284-90.
37.Watts RW. Determination of uric acid in blood and in urine. Ann Clin Biochem 1974;11:103-11.
38.Fossati P, Prencipe L, Berti G. Use of 3,5-dichloro-2- hydroxybenzenesulfonic acid / 4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 1980;26:227-31.
39.Brown ND, Kintzios JA, Koetitz SE. Determination of hypo- xanthine, xanthine, and uric acid in biological fluids by ion-pair high-performance liquid chromatography. J Chromatogr 1979;177:170-3.
40.Nissen P. Simultaneous determination of allopurinol, oxipurinol and uric acid in human plasma by high-performance liquid chromatography. J Chromatogr 1982;228:382-6.
41.Ellerbe P, Cohen A, Welch MJ, White E. Determination of serum uric acid by isotope dilution mass spectrometry as a new candidate definitive method. Anal Chem 1990;62:2173-7.
42.Whelton AW, Watson AJ, Rock RC. Nitrogen Metabolites and Renal Function. In: Burtis CA, Ashwood ER, eds. Tietz Textbook of Clinical Chemistry. 2nd ed. Philadelphia: W.B.Saunders,1994, 1354-74.
43.Star VL, Hochberg MC. Prevention and management of gout. Drugs 1993;45:212-22.
44.Peichl P. Epidemiology, incidence and sex specific differences in primary gout. Wien Med Wochenschr 1997;147: 370-2.
45.Doherty M. Crystal-related arthropathies. In: Weathe- rall DJ, Ledingham JGG, Warrell DA, eds. Oxford Textbook of Medicine. 3rd ed. New York: Oxford University Press,1996; 2984- 90.
46.Kelley WN, Schumacher HR. Crystal-associated synovitis. In: Kelley WN eds. Textbook of Rheumatology. 4th ed. Philadel- phia: Saunders,1993;1291-336.
47.Sampson EJ, Baird MA, Burtis CA, Smith EM, Witte DL, Bayse DD. A coupled-enzyme equilibrium method for measuring urea in serum: optimization and evaluation of the AACC study group on urea candidate reference method. Clin Chem 1980;26:816-26.
48.Butler AR. The Jaffe reaction. Identification of the coloured species. Clin Chim Acta 1975;59:227-32.
49.Tietz NW, Pruden EL, Siggaard-Andersen O. Electrolyte. In: Burtis CA, Ashwood ER, eds. Tietz Textbook of Clinical Chemistry. 2nd ed. Philadelphia: W.B.Saunders,1994;1354-74.
50.Kleinbaum DG, Kupper LL, Muller KE. Applied Regression Analysis and Other Multivariable Method. 2nd ed. Boston: PWS- KENT,1986;80-95.
51.Grahame R, Scott JT. Clinical survey of 354 patients with gout. Ann Rheum Dis 1970;29:461-8.
52.Maesaka JK, Fishbane S. Regulation of renal urate excretion: a critical review. Am J kidney Dis 1998;32:917-33.
53.Diamond HS, Lazarus R, Kaplan D, Halberstam D. Effect of urine flow rate on uric acid excretion in man. Arthritis Rheum 1972;15:338-46.
54.Engle JE, Steele TH. Variation of urate excretion with urine flow in normal man. Nephron 1976;16:50-6.
55.Emrich HM, Stoll E, Friolet B, Colombo JP, Richterich R, Rossi E. Sweat composition in relation to rate of sweating in patients with cystic fibrosis of the pancreas. Pediatr Res 1968;2:464-78.
56.Komives GK, Robinson S, Roberts JT. Urea transfer across the sweat gland. J Appl Physiol 1966;21:1681-4.
57.Boysen TC, Yanagawa S, Sato F, Sato K. A modified anae- robic method of sweat collection. J Appl Physiol 1984;56: 1302-7.
58.Sato K. Sweat induction from an isolated eccrine sweat gland. Am J Physiol 1973;225:1147-51.
59.Sato K, Dobson RL. The effect of intracutaneous d- aldosterone and hydrocortisone on human eccrine sweat gland function. J Invest Dermatol 1970;54:450-62.
60.Sjodin B, Hellsten Westing Y. Changes in plasma concen- tration of hypoxanthine and uric acid in man with short- distance running at various intensities. Int J Sports Med 1990; 11:493-5.
61.Green HJ, Fraser IG. Differential effects of exercise intensity on serum uric acid concentration. Med Sci Sports Exerc 1988;20:55-9.
62.Sutton JR, Toews CJ, Ward GR, Fox IH. Purine metabolism during strenuous muscular exercise in man. Metabolism 1980; 29:254-60.
63.Sahlin K, Palmskog G, Hultman E. Adenine nucleotide and IMP contents of the quadriceps muscle in man after exercise. Pflugers Arch 1978;374:193-8.
64.Sorensen LB, Levinson DJ. Origin and extrarenal elimi- nation of uric acid in man. Nephron 1975;14:7-20.
65.Huang CT, Chen ML, Huang LL, Mao IF. Uric acid and urea in human sweat. Chin J Physiol 2002;45:109-15.
66. Kuno Y. Human Perspiration. 1st ed. Springfield: Charles C Thomas,1956;24.
67.Poortmans JR. Exercise and renal function. Sports Med 1984;1:125-53.
68.Knochel JP, Carter NW. The role of muscle cell injury in the pathogenesis of acute renal failure after exercise. Kidney Int Suppl 1976;6:558-64.
69.Gutman AB, Yu TF. A three-component system for regulation of renal excretion of uric acid in man. Trans Assoc Am Physicians 1961;74:353-65.
70.Diamond HS, Sharon E. Evidence for a post-secretory reabsorptive site for uric acid in man. Adv Exp Med Biol 1974; 41:745-9.
71.Mao IF, Chen ML, Ko YC. Electrolyte loss in sweat and iodine deficiency in a hot environment. Arch Environ Health 2001;56:271-7.
72.Kelley WN, Wortmann RL. Gout and Hyperuricemia. In: Kelley WN, Ruddy S, Harris ED, Sledge CB, eds. Textbook of Rheumatology. 5th ed. Philadelphia: W.B. Saunders, 1997, 1313- 51.
73.Holmes EW, Kelley WN, Wyngaarden JB. Editorial: The kidney and uric acid excretion in man. Kidney Int 1972;2:115- 8.
74.Cappuccio FP, Strazzullo P, Farinaro E, Trevisan M. Uric acid metabolism and tubular sodium handling. Results from a population-based study. JAMA 1993;270:354-9.
75.Ament W, Huizenga JR, Mook GA, Gips CH, Verkerke GJ. Lactate and ammonia concentration in blood and sweat during incremental cycle ergometer exercise. Int J Sports Med 1997; 18:35-9.
76.Quick AJ. The effect of exercise on excretion of uric acid. J Biol Chem 1935;110:107-12.
77.Lecocq FR, McPhaul JJ. Effects of starvation, high fat diets and ketone infusions on uric acid balance. Metabolism 1965;14:186-97.
78.Burch RE, Kurke N. The effect of lactate infusion on serum uric acid. Proc Soc Exp Biol Med 1968;127:17-20.
79.Bergstrom J, Hultman E. A study of the glycogen meta- bolism during exercise in man. Scand J Clin Lab Invest 1967; 19:218-28.
80.Hultman E, Bergstrom J, Anderson NM. Breakdown and resyn- thesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. Scand J Clin Lab Invest 1967;19:56-66.
81.Woods HF, Eggleston LV, Krebs HA. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J 1970;119:501-10.
82.Schrier RW, Hano J, Keller HI, Finkel RM, Gilliland PF, Cirksena WJ, Teschan PE. Renal, metabolic, and circulatory responses to heat and exercise. Studies in military recruits during summer training, with implications for acute renal failure. Ann Intern Med 1970;73:213-23.
83.Senay LC, Mitchell D, Wyndham CH. Acclimatization in a hot, humid environment: body fluid adjustments. J Appl Physiol 1976;40:786-96.
84.Knochel JP, Dotin LN, Hamburger RJ. Heat stress, exercise, and muscle injury: effects on urate metabolism and renal function. Ann Intern Med 1974;81:321-8.
85.Takanishi T, Kimura N, Ito T, Morotomi Y, Itani T. The effects of fluid ingestion and its composition on uric acid metabolism during high intensity long term exercise. Nippon Eiseigaku Zasshi 1998;53:463-9.
86.Maughan RJ. The sports drink as a functional food : formulations for successful performance. Proc Nutr Soc 1998; 57:15-23.
87.Gonzalez-Alonso J, Heaps CL, Coyle EF. Rehydration after exercise with common beverages and water. Int J Sports Med 1992; 13:399-406.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top