跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王昱鈞
研究生(外文):Yu-Chun Wang
論文名稱:綠豆篁及桑黃之功能性評估研究第一部分綠豆篁在美容及對能量代謝的影響第二部份桑黃對肝腫瘤小鼠之保肝功能及能量代謝的影響
論文名稱(外文):Functional Studies of Lvdou huang and Phellinus linteus
指導教授:黃惠宇黃惠宇引用關係
指導教授(外文):Hui-Yu Huang
學位類別:碩士
校院名稱:實踐大學
系所名稱:食品營養與保健生技研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:87
中文關鍵詞:綠豆篁桑黃抗氧化能量代謝保肝SCID mice
外文關鍵詞:Lvdou huang、Phellinus linteus、antioxidant activity、energy metabolism 、hepato-protective、SCID mice
相關次數:
  • 被引用被引用:2
  • 點閱點閱:6671
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中草藥為中國傳統的藥補、食補藥材,近年來也在許多的科學研究中證實中草藥的確具有許多藥理學上的療效。本實驗分為兩部份,第一部分為探討綠豆篁是否具有抗氧化、美白功效,及對於小鼠體內能量代謝的影響。實驗利用甲醇及乙醇萃取之綠豆篁粗萃物,測定DPPH清除自由基及抑制酪胺酸酶能力,並以細胞培養方式觀察綠豆篁粗萃物對於上皮細胞及黑色素瘤細胞存活率、增生率和抗氧化酵素能力之影響。結果顯示,在DPPH自由基清除試驗中,綠豆篁粗萃物濃度達4000 μg/ml時,其自由基清除能力與25 μg/ml VitC的清除能力相當。在酪胺酸酶抑制能力試驗中,乙醇萃取之綠豆篁粗萃物的抑制能力較甲醇萃取為佳,綠豆篁粗萃物濃度達4000 μg/ml時,與Vit C組(250 μg/ml)相比其抑制能力顯著的高出44.1 %。在細胞試驗中,甲醇及乙醇萃取之綠豆篁粗萃物對上皮細胞及黑色素瘤細胞存活率無影響,並可顯著的提升上皮細胞的增生率。以乙醇萃取之綠豆篁粗萃物處理上皮細胞,對其抗氧化能力也可顯著的提升。在動物實驗方面,分為餵食無菌水之控制組及給予BALB/c小鼠每日口服管餵不同劑量之綠豆篁:低劑量組(25mg/day)、中劑量組(50 mg/day)及高劑量組(100 mg/day),共餵食四週。分析其肝臟中抗氧化酵素,包括SOD(Superoxide Dismutase)、catalase、GPx(Glutathione peroxidases)的活性,並分析其血漿中血糖(Glucose, Glu)、總膽固醇(Total-cholesterol, T-Cho)、三酸甘油脂(Triglyceride, TG)及高密度脂蛋白-膽固醇(High density lipoprotein-cholesterol, HDL-c)、低密度脂蛋白-膽固醇(Low density lipoprotein-cholesterol, LDL-c)。結果顯示,小鼠的肝臟中抗氧化酵素SOD及catalase活性以餵食中劑量組為最高,並顯著的高於控制組,而GPx活性以低劑量組為最高,亦顯著的高於控制組。在小鼠能量代謝方面,餵食綠豆篁的各組小鼠血漿中血糖值,皆顯著低於控制組,在T-Cho濃度方面,餵食中劑量及高劑量組顯著的低於控制組,而TG則是高劑量組顯著的低於控制組。由結果得知,綠豆篁粗萃物具有促使上皮細胞增生、抗黑色素形成及清除自由基、增加抗氧化酵素活性等功能,因此其對於美白和抗氧化是具有顯著功效的。在能量代謝方面則具有降低血糖、T-Cho及TG之能力,但血漿中HDL-c及LDL-c數值則無明顯改變。第二部份為,利用桑黃來評估其對腫瘤小鼠保肝功能及能量代謝的影響。先給予SCID/CB-17小鼠注射肝腫瘤細胞(Hep3B),誘發小鼠肝腫瘤形成,之後以口服管灌方式給予SCID/CB-17小鼠不同劑量的桑黃菌絲體粉末混勻液,分別為控制組(無肝腫瘤及肝腫瘤)、低劑量(50 mg/kg 小鼠體重)、中劑量(100 mg/kg 小鼠體重)、高劑量(200 mg/kg小鼠體重)。餵食共8週後,犧牲小鼠,取肝臟及血液,肝臟將測其SOD及catalase活性,並測量血漿中GPT(glutamate pyruvate transaminase)、GOT (glutamate oxaloacetate transaminase),來評估桑黃對肝腫瘤小鼠保肝的功效。血液部分將測血糖、T-Cho、TG、HDL-c、LDL-c、胰島素值及大腿肌肉總蛋白量和肝醣量,來評估桑黃對肝腫瘤小鼠能量代謝的影響。結果顯示餵食低劑量桑黃可降低肝腫瘤小鼠血漿中GOT、GPT值及增加肝臟中SOD、catalase活性,但高劑量及中劑量組則具反效果。在能量代謝方面,餵食桑黃可增加肝腫瘤小鼠血糖值,並可降低餵食低劑量小鼠之血漿中胰島素值,在總膽固醇、TG、HDL-c、LDL-c方面則無影響。而餵食低劑量之肝腫瘤小鼠肌肉中總蛋白量亦有顯著的提升,但對肌肉中肝醣量則無顯著影響。由結果得知,低劑量的桑黃對肝腫瘤小鼠是具有保肝功效的。另外,桑黃可避免肝腫瘤所造成的低血糖現象,並減少肝腫瘤所造成肌肉中蛋白質的異化作用。
The Chinese herbs medicine is a used to treat the disease in several millenniums, and it acts the important role in the traditional therapy. In these years, many studies demonstrate that Chinese herbs have many pharmacology effects. The aim of this study divided into two categories. First, try to study the effect of Lvdou huang (LH) in antioxidant activity, whitening effect in vitro and energy metabolism in vivo. The methanol and ethanol extraction of LH were used to evaluated the free radical scavenging rate and the ability of tyrosinase inhibition rate. The MTT assay, SOD, and catalase activity were examined with MDCK and A375 cell. The results indicated that 4000 μg/ml LH extract was equivalent to 25 μg/ml Vitamin C in DPPH scavenging rate. The ability of tyrosinase inhibition of ethanol LH extract showed the better result than methanol extract, and the 4000 μg/ml ethanol LH extract was 44.1% higher than the 250 μg/ml Vitamin C. The LH extract didn’t influence survival rate of MDCK and A375 cell, but was significantly increased proliferation of MDCK cell. In addition, the ethanol LH extract increased antioxidant enzymes activity in MDCK cell significantly, especially at 250 μg/ml ethanol LH extract. In animal model, the BALB/c mice were oral administered sterile water or LH at different dosages, including 25 mg/day, 50 mg/day, or 100 mg/day, respectively for 4 weeks. We collected the mice liver to analysis SOD, catalase, and GPx activity, and the mice blood to analysis plasma glucose, T-Cho, TG, HDL-c and LDL-c. The results indicated that medium dose LH group significantly increased liver SOD and catalase, and high dose LH group significantly increased liver GPx activity. All LH groups were significantly lowering the plasma glucose, but didn’t change serum HDL-c and LDL-c. Serum T-Cho of medium and high dose LH groups were significantly lower than control group. Serum TG of high dose LH group was significantly lower than control group. In conclusion, LH exhibited many beneficial effects in antioxidant activity, whitening effect, and energy metabolism.Second, the hepato-protective effect and energy metabolism of Phellinus linteus (PL) in hepatoma SCID mice were be studied. The 4 weeks old male SCID/CB-17 mice were divided into 5 groups, and were bearing with Hep3B cells or without. The mice were oral administered sterile water (with or without hepatoma SCID mice) or PL at different dosages (with hepatoma SCID mice), including 50 mg/kg/day, 100 mg/kg/day, or 200 mg/kg/day, respectively for 8 weeks. The SCID mice were sacrificed and were collected their blood and liver. The body weight, serum GOP, GPT, T-Cho, TG, HDL-c, LDL-c, liver SOD and catalase were determined to assess liver protection activity and energy metabolism rate. The results indicated that oral administered low dose PL group decreased GOT and GPT, and increased liver SOD and catalase. However, medium and high dose PL groups were against the results with the low dose. All PL groups were significantly increasing the plasma glucose, and decreased serum insulin with low dose PL group. However, the level of plasma T-Cho, TG, HDL-c and LDL-c didn’t change in all PL groups. Low dose PL group also increased total muscle protein, but muscle glycogen didn’t be influenced. In conclusion, low dose PL exhibited beneficial effects of hepato-protection. In addition, PL may improved to lower blood glucose, and to reduce muscle protein catabolism inducing by hepatoma.
目次
中文摘要 …………………………………………………………………………I
英文摘要 …………………………………………………………………………III
表目次 ……………………………………………………………………………V
圖目次 ……………………………………………………………………………VI
第一章 前言………………………………………………………………………1
第一部分 綠豆篁在美容上之應用及對能量代謝的影響………………………1
第一節 綠豆篁簡介 …………………………………………………1
1.1 綠豆成分及功效.………………………………………………1
1.2 綠豆篁由來、製作方法.………………………………………2
第二節 老化機制探討..………………………………………………3
第三節 皮膚的老化 …………………………………………………5
3.1 皮膚構造及功能 ………………………………………………5
3.2 皮膚老化成因及特徵 …………………………………………6
3.2.1 皮膚老化的外觀變化.……………………………………6
3.2.2 皮膚老化成因.……………………………………………7
3.3 皮膚與黑色素 …………………………………………………8
3.4 皮膚老化與自由基 ……………………………………………8
第四節 體內抗氧化機制 .……………………………………………9
4.1 自由基、活性氧分子與導致之細胞傷害之情形 ……………9
4.2 體內抗氧化防禦機制…………………………………………10
4.2.1 抗氧化酵素系統.………………………………………10
4.2.2 抗氧化非酵素系統.……………………………………13
第二部分 桑黃之保肝功能及能量代謝的影響…………………………………15
第一節 桑黃簡介 ……………………………………………………15
1.1 桑黃的由來 …………………………………………………15
1.2 桑黃分類及外型 ……………………………………………15
1.3 桑黃的產地 …………………………………………………17
1.4 桑黃傳統藥理 ………………………………………………17
1.5 桑黃生物活性成分之研究與應用 …………………………17
第二章 研就動機與目的.………………………………………………………21
第三章 材料與方法.……………………………………………………………22
第一節 研究架構………………………………………………………22
第二節 實驗材料………………………………………………………24
第三節 實驗方法………………………………………………………25
第四節 統計分析………………………………………………………35
第四章 實驗結果 ………………………………………………………………36
第一部分 綠豆篁在美容上之應用及對能量代謝的影響………………………36
第一節 酪胺酸酶活性抑制試驗 ……………………………………36
第二節 DPPH自由基清除試驗………………………………………36
第三節 上皮細胞存活率試驗..………………………………………37
第四節 黑色素瘤細胞存活率試驗 …………………………………38
第五節 上皮細胞增生測定 …………………………………………39
第六節 小鼠肝臟SOD、catalase、GPx活性測定 …………………39
第七節 黑色素瘤細胞SOD、catalase活性測定 ……………………40
第八節 上皮細胞株SOD、catalase活性測定 ………………………40
第九節 小鼠體重變化量 ……………………………………………41
第十節 小鼠飼料攝取量 ……………………………………………41
第十一節 小鼠血漿中血糖、血脂量 ………………………………41
第二部份 桑黃對肝腫瘤小鼠之保肝功能及能量代謝的影響…………………43
第一節 肝腫瘤小鼠肝臟SOD、catalase活性測定 …………………43
第二節 肝腫瘤小鼠GOT、GPT濃度測定 …………………………43
第三節 小鼠體重變化量 ……………………………………………44
第四節 小鼠血漿中血糖、血脂量 …………………………………45
第五節 小鼠血漿中胰島素值 ………………………………………45
第六節 小鼠大腿肌肉蛋白質及肝醣含量 …………………………45
第五章 討論………………………………………………………………………47
第六章 結論………………………………………………………………………55
第七章 參考資料…………………………………………………………………81
行政院農業委員會農糧署(消費者及民眾專區-養生保健-雜糧作物-綠豆)
吳昭慧、連大進 (1996). 綠豆, 少量多樣化雜糧作物栽培手冊台灣省政府農林廳.
蘇宗振 (2001). 國產精緻雜糧專櫃系列介紹, 雜糧與畜產.
李文森 (1987). 解剖生理學, 華杏出版股份有限公司.
理一真修、蔡安力暻 (2005). 能量桑黃¬-解碼抗癌, 世茂出版有限公司.
真野俊樹 (2003). 天然桑黃抗癌‧增強免疫力, 安立出版社.
水野卓 (1999). 菇類的化學、生化學, 國立編譯館
陳洳君 (2005). 靈芝、樟芝、椎茸、桑黃萃取物在調節免疫反應及抗B型肝炎病毒能力之研究 第一部份: BLAB/c小鼠口服後免疫功能調節之研究 第二部份: in vitro抗B型肝炎病毒能力之研究 碩士論文.
簡世勇 (2007). 桑黃對Hep3B誘導肝腫瘤小鼠之抗癌效果評估 碩士論文.
http://guanchang.ho.net.tw/02.htm
http://www.hyakka-saen.com/souou/souou.htm

Adams, M. R., Golden, D. L., Franke, A. A., Potter, S. M., Smith, H. S., and Anthony, M. S. (2004). Dietary soy beta-conglycinin (7S globulin) inhibits atherosclerosis in mice. J Nutr 134, 511-516.

Bolognia, J. L. (1995). Aging skin. The American Journal of Medicine 98, 99-103.

Burton, G. W., Ingold, K.U. (1984). Vitamin E: applications of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res 19, 194–201.

Chaudiere, J., Ferrari-Iliou, R. (1999). Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37, 949-962.

Chen, W., H. F., Li YQ. (2006). The apoptosis effect of hispolon from Phellinus linteus (Berkeley & Curtis) Teng on human epidermoid KB cells. J Ethnopharmacol 21, 280-285.

Choi, S. B., Park, C. H., Choi, M. K., Jun, D. W., and Park, S. (2004). Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Biosci Biotechnol Biochem 68, 2257-2264.

Cross, C. E., Reznick, A. Z., Packer, L., Davis, P. A., Suzuki, Y. J., and Halliwell, B. (1992). Oxidative damage to human plasma proteins by ozone. Free Radic Res Commun 15, 347-352.

Duh, P. D., Du, P. C., and Yen, G. C. (1999). Action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food Chem Toxicol 37, 1055-1061.

Duh, P. D., Yen, W.J., Du, P.C. and Yen, G.C. (1997). Antioxidant activity of mung bean hulls. Journal of the American Oil Chemists Society 74, 1059-1063.

Frei, B., Stocker, R., and Ames, B. N. (1988). Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci U S A 85, 9748-9752.

Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annu Rev Biochem 64, 97-112.
Fukuzawa, K., Inokami, Y., Tokumura, A., Terao, J., and Suzuki, A. (1998). Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and alpha-tocopherol in liposomes. Lipids 33, 751-756.

Gilchrest, B. A. (1989). Skin aging and photoaging: an overview. J Am Acad Dermatol 21, 610-613.

Gray, A. M., Flatt, P. R. (1998). Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J Endocrinol 157, 259-266.

Halliwell, B., Gutteridge, J.M. (1997). Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals. J Neurochem 69, 1330-1331.

Han, S. B., Lee, C. W., Jeon, Y. J., Hong, N. D., Yoo, I. D., Yang, K. H., and Kim, H. M. (1999). The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacology 41, 157-164.

Itoh, T., Garcia, R. N., Adachi, M., Maruyama, Y., Tecson-Mendoza, E. M., Mikami, B., and Utsumi, S. (2006). Structure of 8Salpha globulin, the major seed storage protein of mung bean. Acta Crystallogr D Biol Crystallogr 62, 824-832.

Jenkins, G. (2002). Molecular mechanisms of skin ageing. . Mechanisms of Ageing and Development 123, 802-810.

Jeon, T. I., Hwang, S. G., Lim, B. O., and Park, D. K. (2003). Extracts of Phellinus linteus grown on germinated brown rice suppress liver damage induced by carbon tetrachloride in rats. Biotechnol Lett 25, 2093-2096.

Jialal, I., Vega, G.L., Grundy, S.M. (1990). Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein. Atherosclerosis 82, 185-191.

Kabir, M., Rizkalla, S. W., Quignard-Boulange, A., Guerre-Millo, M., Boillot, J., Ardouin, B., Luo, J., and Slama, G. (1998). A high glycemic index starch diet affects lipid storage-related enzymes in normal and to a lesser extent in diabetic rats. J Nutr 128, 1878-1883.

Khatun, K., Mahtab, H., Khanam, P.A., Sayeed, M.A., Khan, K.A. (2007). Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects.
. Mymensingh Med J 16, 94-99.

Kim, D. H., Yang, B.K., et al. (2001). Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnology Letters 23, 513-517.

Kim, G. Y., Kim, S. H., Hwang, S. Y., Kim, H. Y., Park, Y. M., Park, S. K., Lee, M. K., Lee, S. H., Lee, T. H., and Lee, J. D. (2003). Oral administration of proteoglycan isolated from Phellinus linteus in the prevention and treatment of collagen-induced arthritis in mice. Biol Pharm Bull 26, 823-831.

Kim, G. Y., Roh, S. I., Park, S. K., Ahn, S. C., Oh, Y. H., Lee, J. D., Park, Y. M. (2003). Alleviation of experimental septic shock in mice by acidic polysaccharide isolated from the medicinal mushroom Phellinus linteus. Biol Pharm Bull 26, 1418-1423.

Kim, H. G., Yoon, D. H., Lee, W. H., Han, S. K., Shrestha, B., Kim, C. H., Lim, M. H., Chang, W., Lim, S., Choi, S., et al. (2007). Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-kappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J Ethnopharmacol 114, 307-315.

Kirkman, H. N., Galiano, S., and Gaetani, G. F. (1987). The function of catalase-bound NADPH. J Biol Chem 262, 660-666.

Kittss, D. (1997). An evaluation of the multiple effects of the antioxidant vitamins. Trends Food Sci Tech 8, 198-203.

Koh, J. H., Kim, J. M., Chang, U. J., and Suh, H. J. (2003). Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis. Biol Pharm Bull 26, 84-87.

Kubo, I., Kinst-Hori, I. and Yokokawa, Y. (1994). Tyrosinase inhibitors from Anacardium occinentale fruits. Journal of Natural Products 574, 545-551.

Lee, K. G., Mitchell, A., and Shibamoto, T. (2000a). Antioxidative activities of aroma extracts isolated from natural plants. Biofactors 13, 173-178.

Lee, K. G., Mitchell, A. E., and Shibamoto, T. (2000b). Determination of antioxidant properties of aroma extracts from various beans. J Agric Food Chem 48, 4817-4820.

McAnlis, G. T., McEneny, J., Pearce, J., and Young, I. S. (1999). Absorption and antioxidant effects of quercetin from onions, in man. Eur J Clin Nutr 53, 92-96.

Miyachi, Y. (1987). Reactive oxygen species in photodermatology. The Biological Role of Reactive Oxygen Species in Skin, 37-41.

Morita, H., Kobata, H., Takeya, K. and Itokawa, H. (1994). Pseudosterllarin G, a new tyrosinase inhibitory cyclic octapeptide from Pseudoatellaria heterophylla. Tetrahedron Letters 3521, 3563-3564.

Myers, M. G., White, M. F. (1993). The new elements of insulin signaling. Insulin receptor substrate-1 and proteins with SH2 domains. Diabetes 42, 643-650.

Nelson, D. L. a. C., M. M. (2000). Lehninger Principles of Biochmistry. Worth Publishers, p.313.

Rimm, E. B., Katan, M. B., Ascherio, A., Stampfer, M. J., and Willett, W. C. (1996). Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125, 384-389.

Sasaki, T., Arai, Y., Ikekawa, T., Chihara, G., Fukuoka, F. (1971). Antitumor polysaccharides from some polyporaceae, Ganoderma applanatum (Pers.) Pat and Phellinus linteus (Berk. et Curt) Aoshima. Chem Pharm Bull (Tokyo) 19, 821-826.

Schechter, S. R. (1996). Fighting free radicals with antioxidant. Health Foods Business 6, 28-29.

Shi, H., Noguchi, N., and Niki, E. (1999). Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation. Free Radic Biol Med 27, 334-346.

Shirota, S., Miyazaki, K., Aiyama, R., Ichioka, M., and Yokokura, T. (1994). Tyrosinase inhibitors from crude drugs. Biol Pharm Bull 17, 266-269.


Shon, Y.H., N. K. (2001). Antimutagenicity and induction of anticarcinogenic phase II enzymes by basidiomycetes. J Ethnopharmacol 77, 103-109.

Sohal, R. S., Allen, R.G. (1990). Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 25, 499-522.

Todorov, P. T., Wyke, S. M., and Tisdale, M. J. (2007). Identification and characterization of a membrane receptor for proteolysis-inducing factor on skeletal muscle. Cancer Res 67, 11419-11427.

Weisiger, R. A., Fridovich, I. (1973). Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248, 4793-4796.

White, M. F., Kahn, C. R. (1994). The insulin signaling system. J Biol Chem 269, 1-4.

Wlodarek, D. (2007). [The mechanisms of blood LDL-cholesterol lowering by phytosterols--a review]. Rocz Panstw Zakl Hig 58, 47-51.

Xu, Z., Le, K., Moghadasian, M.H. (2007). Long-term phytosterol treatment alters global gene expression in the liver of apo E-deficient mice. The FASEB Journal 21, 854.814.

Young, I. S., Woodside, J.V. (2001). Antioxidants in health and disease. J Clin Pathol 54, 176-186.

Zhang, G.L., Teng, H.L., Li, Z.B. (2002). Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World J Gastroenterol 8, 728-733.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top