|
References 1. A. Gu´eziec, “ Surface simplification with variable tolerance”, Second Annual Intl. Symp. on Medical Robotics and Computer Assisted Surgery (MRCAS ’95), pp.132–139, 1995. 2. A. G. Belyaev and E. Anoshkina, “Detection of surface creases in range data,” Mathematics of surfaces, Loughborough, UK, pp.50-61 September 2005. 3. A. Shamir and V. Pascucci, “Temporal and spatial level of details for dynamic meshes”, Proc. of Virtual Reality Systems and Techniques, pp. 423–430, 2001. 4. B. Hamann, “A Data Reduction Scheme for Triangulated Surfaces”, Computer Aided Geometric Design, Vol.11, pp. 197-214, 1994. 5. B. O’Neill, Elementary Differential Geometry, Academic Press, 1997. 6. B. S. Jong, J. L. Tseng, and W. H. Yang, “An Efficient and Low-Error Mesh Sim-plification Method Based on Torsion Detection”, The Visual Computer, vol.22, no.1, pp.56-67, 2006. 7. B. S. Jong, J.L. Tseng, W. H. Yang, and T. W. Lin, “Extracting Features and Sim-plifying Surfaces using Shape Operator”, The 2005 IEEE International Con-ference on Information, Communications and Signal Processing (ICICS 2005), pp. 1025-1029, 2005. 8. B. S. Jong , P. F. Lee, J. and L. Tseng, “Raising Local Density for Object Recon-struction using Auxiliary Points”, The 2006 IEEE Fifth Annual International Conference on Computer and Information Science, pp. 265-270, 2006. 9. B. S. Jong, W. Y. Chung, P. F. Lee, and J. L. Tseng, “Efficient Surface Reconstruc-tion Using Local Vertex Characteristics”, The 2005 International Conference on Imaging Science, Systems, and Technology : Computer Graphics, pp. 62-68, 2005. 10. C. Moenning and N. A. Dodgson, “Intrinsic point cloud simplification”, In Proc. 14th GrahiCon, Vol. 14, 2004. 11. D. Zhang and Z. Zhou, “2-Directional 2-Dimensional PCA for Efficient Face Representation and Recognition”, Neurocomputing, vol.69, no.1-3, pp. 224-231, 2005. 12. E. S. Jang, J. D. K. Kim, S. Y. Jung, M. J. Han, S. O. Woo, and S. J. Lee, “Inter-polator Data Compression for MPEG-4 Animation”, In IEEE transactions on Circuits and Systems for Video Technology, vol.14, no.7, pp. 989-1008, 2004. 13. F. C. Huang, B. Y. Chen, Y. Y. Chuang, and M. Ouhyoung, “Animation Model Simplification”, Proc. of Workshop on Computer Graphics 2005, http://www.cmlab.csie.ntu.edu.tw/~robin/plist.html, last viewed date: 2007/5/17. 14. G. H. Bendels, R. Schnacel ,and R. Klein, “Detecting holes in point set surface,” Journal of WSCG, vol. 14, 2006. 15. G. H. Golub and C. F. van Loan, “Matrix Computations”, John Hopkins Univer-sity Press, Baltimore, London, 3rd edition, 1996. 16. G. Turk and J. F. O’Brien, “Variational Implicit Surfaces,” Technical Report GIT-GVU-99-15, Georgia Institute of Technology, May 1999. 17. G. Turk and J. F. O’Brien, “Shape transformation using variational implicit sur-faces,” SIGGRAPH ’99, pp.335-342, Aug 1999. 18. H. Briceno, P. Sander, L. McMillan, S. Gotler, and H. Hoppe, “Geometry videos: a new representation for 3D animations”, ACM Symp. Computer Animation, pp. 136-146, 2003. 19. H. Edelsbrunner, “Weighted alpha shapes,” Technical report UIUCDCS-R92- 1760DCS University of Illinois at Urbana-Champaign, Urbana, Illinois, 1992. 20. H. Edelsbrunner and E. P. Mucke, “Three-dimensional Alpha Shapes,” ACM Transactions on Graphics, vol.13, no.1, pp.43–72, 1994. 21. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface Re-construction from Unorganized Points,” Proceedings of SIGGRAPH, vol.26, no.2, pp.71–78, 1992. 22. H. K. Kaiser, “The application of electronic computers to factor analysis”, Educa-tional and Psychological Measurement, 20, pp. 141-151, 1960. 23. I. Guskov and A. Khodakovsky, “Wavelet Compression of Parametrically Coher-ent Mesh Sequences”, ACM Siggraph Symposiumon Computer Animation, pp. 183-192, 2004. 24. I. T. Jolliffe, “Principal Component Analysis”, Springer series in statistics. Springer-Verlag, 1986. 25. J. C. Carr, W. R. Fright, and R. K. Beatson, “Surface Interpolation with Radial Basis Functions for medical imaging,” IEEE Trans. Medical Imaging, vol.16, no.1, pp.96-107, February 1997. 26. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. Mccallum, and T. R. Evans, “Reconstruction and Representation of 3d Objects with Radial Basis Functions,” Proceedings of SIGGRAPH, pp.67–76, 2001. 27. J. D. Boissonnat and F. Cazals, “Coarse-to-fine surface simplification with geo-metric guarantees”, EUROGRAPHICS’01, Conf. Proc, pp. 490–499, 2001. 28. J. E. Lengyel, “Compression of time-dependent geometry”, ACM Symposium on Interactive 3D Graphics, pp. 89-96, 1999. 29. J. L. Tseng, “Surface Reconstruction and Simplification Based on Shape Geomet-ric Properties”, doctoral dissertation published by Chung Yuan Christian Uni-versity, 2006. 30. J. Rossignac, A. Safonova, and A. Szymczak, “3D compression made simple: Edgebreaker on a corner table”, Proc. of Shape Modeling International Con-ference, pp. 278-283, 2001. 31. J. Rossignac and P. Borrel, “Multi- resolution 3D approximations for rendering complex scenes”, Modeling in Computer Graphics: Methods and Applications, pp. 455–465, 1993. 32. K. Mamou, T. Zaharia, and F. Prêteux, “A Preliminary Evaluation of 3D Mesh Animation Coding Techniques”, Proc. SPIE Conference on Mathematical Methods in Pattern and Image Analysis, vol. 5916, pp. 44-55, 2005. 33. L. Ibarria and J. Rossignac, “Dynapack: space-time compression of the 3D anima-tions of triangle meshes with fixed connectivity”, ACM Siggraph Symposium on Computer Animation, pp. 126-135, 2003. 34. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Com-puting and Rendering Point Set Surfaces”, IEEE TVCG, Vol.9, No.1, 2003. 35. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Point Set Surfaces”, In Proc. 12th IEEE Visualization Conf., pp. 21–28, 2001. 36. M. Alexa and W. Müller, “Representing animations by principal components”, Computer Graphics Forum, vol.19, pp. 411-418, 2000. 37. M. E. Algorri and F. Schmitt, “Surface Reconstruction from Unstructured 3D Data,” Computer Graphics Forum, pp.47-60, 1996. 38. M. Garland and P. S. Heckbert, “Surface simplification using quadric error met-rics”, SIGGRAPH Conference Proc., pp. 209-216, 1997. 39. M. Gopi and S. Krishnan, “A Fast and Efficient Projection-based Approach for Surface Reconstruction,” 15th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI, pp. 179-186, 2002. 40. M. Gopi, S. Krishnan, and C. T. Silva, “Surface Reconstruction Based on Lower Dimensional Localized Delaunay Triangulation,” Computer Graphics Forum, Vol.19, No.3, 2000. 41. M. Mueller, B. Heidelberger, M. Teschner, and M. Gross, “Meshless Deforma-tions Based on Shape Matching”, Proc. of SIGGRAPH, pp. 471-478, 2005. 42. M. Pauly, M. Gross and L. P. Kobbelt, “Efficient Simplification of Point-Sampled Surfaces”, In Proc. 13th IEEE Visualization Conf., pp. 163-170, 2002. 43. M. Pauly, R. Keiser, L. Kobbelt, and M. Gross, “Shape modeling with point-sampled geometry,” In Proceedings of ACM SIGGRAPH 03, 2003. 44. M. Pauly, R. Keiser, and M. Gross, “Multi-scale Feature Extraction on Point-sampled Surfaces,” Computer Graphics Forum, Vol.22, No.3, pp. 121-130, 2003. 45. M. Sattler, R. Sarlette, and R. Klein, “Simple and efficient compression of anima-tion sequences”, ACM Siggraph Symposium on Computer Animation, pp.209-217, 2005. 46. M. Varnuska, J. Parus, and I. Kolingerova, “Simple Holes Triangulation in Sur-face Reconstruction,” Proceedings of ALGORITMY Conference on Scientific Computing, pp.280-289, 2005. 47. N. Kambhatla and T. K. Leen, “Dimension reduction by local PCA”. Neural Computation, vol.9, pp 1493-1516, 1997. 48. P. Cignoni, C. Montani, and R. Scopigno, “ Metro: Measuring Error on Simplified Surfaces” , Computer Graphics Forum, Vol.17 , No.2 , pp.167-174, 1998. 49. P. Glardon, R. Boulic, and D. Thalmann, “PCA-based Walking Engine using Mo-tion Capture Data”, Proc. of Computer Graphics International, pp. 292-298, 2004. 50. P. Glardon, R. Boulic, and D. Thalmann,” A Coherent Locomotion Engine Ex-trapolating Beyond Experimental Data”, Proc. of Computer Animation and Social Agent, pp. 73-84, 2004. 51. R. All`egre, R. Chaine, and S. Akkouche, “Convection-driven dynamic surface reconstruction”, In Proc. Shape Modeling International, pp. 33–42, 2005. 52. S. C. Snook and R. L. Gorsuch, “Component analysis versus common factor analysis: A Monte Carlo study”, Psychological Bulletin, vol.106, no.1, pp. 148-154, 1989. 53. S. Gumhold, X. Wang, and R. MacLeod, “Feature extraction from point clouds,” Proceeding of 10th International Meshing Roundtable, pp.293-305, 2001. 54. T. K. Dey, J. Giesen and J. Hudson, “Decimating Samples for Mesh Simplifica-tion”, In Proc. 13th Canadian Conference on Computational Geometry, pp. 85–88, 2001. 55. T. Y. Lee, P.H. Lin, S. U. Yan, and C. H. Lin, “Mesh decomposition using motion information from animation sequence,” Computer Animation and Virtual Worlds, vol.16, pp. 519-529, 2005. 56. V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii, “Function repre-sentation of solids reconstructed from scatted surface points and contours,” Computer Graphics Forum, vol.14, no.4, pp.181-188, 1995. 57. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle meshes,” ACM SIGGRAPH Computer Graphics, Vol.26, No.2, pp.:65-70, 1992. 58. Y. Lee and S. Lee, “Geometric Snakes for Triangle Meshes,” Eurographics 02, 2002. 59. Z. Karni and C. Gotsman, “Compression of soft-body animation sequences”, Computer Graphics, vol.28, pp. 25-34, 2004.
|