|
[1]D. Kahng and M. M. Atalla, “Silicon-silicon Dioxide Field Induced Surface Devices,” in IRE-AIEE Solid-state Device Res. Conf., (Carnegie Inst. of Technol., Pittsburgh, PA), 1960. [2]G. E. Moore, “Progress in Digital Integrated Electronics,” in IEDM Tech. Dig., 1975, pp.11-13. [3]D. A. Muller, T. Sorsch, S. Moccio, S. Moccio, F. H. Baumann, K. Evans-Lutterodt and G. Timp, “The Electronic Structure at the Atomic Scale of Ultrathin Gate Oxides,” Nature, London, Vol. 399, pp. 758-761, 1999. [4]D. A. Muller, Nature Materials,” A sound barrier for silicon?,” Vol. 4, pp. 645-647, 2005. [5]The International Technology Roadmap for Semiconductors, 2009. [6]D. A. Buchanan, “Scaling the Gate Dielectric: Materials, Integration and Reliability,” IBM J. Res. Dev., Vol. 43, pp. 245-246, 1999. [7]E. H. Nicollian and J. R. Brews, MOS physics and Technology, pp. 821-827, Wiley, New York, 1981. [8]K. J. Yang and C. Hu, “MOS Capacitance Measurements for High-leakage Thin Dielectrics.” IEEE Trans. Electron Devices, Vol. 46, pp. 1500-1501, 1999. [9]K. J. Yang, Y. C. King and C. Hu, “Quantum Effect in Oxide Thickness Determination from Capacitance Measurement,” in Proc. Symp. VLSI Tech., pp. 77-78, 1999. [10]C. H. Choi, Y. Wu, J. S. Goo, Z. Yu and R. W. Dutton, “Capacitance Reconstruction from Measured C-V in High Leakage, Nitride/Oxide, MOS.” IEEE Trans. Electron Device, Vol. 47, pp, 1843-1850, 2000. [11]Berkeley Device Group. [Online] Available: http://www-device.eecs.berkeley.edu/index.htm [12]R. Castagné and A. Vapaille, “Description of the SiO2-Si Interface Properties by Means of Very Low Frequency MOS Capacitance Measurements,” Surface Sci., Vol. 28, pp. 157-193, 1971. [13]R. Castagné and A. Vapaille, C. R. Acad. Sci. (Paris), Vol. 270, pp. 1347, 1970. [14]M. Kuhn, “A Quasi-static Technique for MOS C-V and Surface State Measurements,” Solid-State Electron, Vol. 13, pp. 873-885, 1970. [15]G. C. Jain, A. Prasad and B. C. Chakravarty, “On the Mechanism of the Anodic Oxidation of Si at Constant Voltage,” J. Electrochem. Soc., Vol. 126, pp. 89-92, 1979. [16]M. Grecea, C. Rotaru, N. Nastase and G. Craciun, “Physical Properties of SiO2 Thin Films Obtained by Anodic Oxidation,” J. Mol. Struct., Vol. 480-481, pp. 607-610, 1999. [17]C. C. Ting, Y. H. Shih and J. G. Hwu, “Ultra Low Leakage Characteristics of Ultra-thin Gate Oxides (~3 nm) Prepared by Anodization Followed by High Temperature Annealing,” IEEE Trans. Electron Devices, Vol. 49, pp. 172-181, 2002. [18]P. F. Schmidt and W. Michel, “Anodic Formation of Oxide Films on Silicon,” J. Electrochem. Soc., Vol. 104, pp. 230-236, 1957. [19]P. F. Schmidt, T. W. O’Keeffe, J. Oroshinik and A. E. Owen, “Doped Anodic Oxide Films for Device Fabrication in Silicon: Diffusion Source of Controlled Composition and Diffusion Resultsm,” J. Electrochem. Soc., Vol. 112, pp. 800-807, 1965. [20]S. K. Sharma, B. C. Chakravarty, S. N. Singh, B. K. Das, D. C. Parashar, J. Rai and P. K. Gupta, “Kinetics of Growth of Thin Anodic Oxides of Silicon at Constant Voltages,” J. Physics and Chemistry of Solids, Vol. 50, pp. 679-684, 1989. [21]J. A. Bardwell, N. Draper and P. Schmuki, “Growth and Characterization of Anodic Oxides on Si(100) Formed in 0.1 M Hydrochloric Acid,” J. Appl. Phys., Vol. 79, pp. 8761-8769, 1996. [22]Vitali Parkhutik, “New Effects in the Kinetics of the Electrochemical Oxidation of Silicon,” Electrochemical Acta, Vol. 45, pp. 3249-3254, 2000. [23]Sorab K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd ed., pp. 487-495, Wiley Inter-science, New York, 1994. [24]C. C. Wang, T. H. Li and J. G. Hwu, “Ultra-thin Gate Oxide Prepared by Tensile-stress Oxidation in Tilted Cathode,” J. Electrochem. Soc., Vol. 155, pp. G61-G64, 2008. [25]E. H. Nicollian and J. R. Brews, MOS physics and Technology, pp. 424-428, Wiley, New York, 2003. [26]E. H. Nicollian and A. Goetzberger, “Lateral AC Current Flow Model for Metal-insulator-semiconductor Capacitors,” IEEE Transact. Electron Devices, Vol. 12, pp. 108-117, 1965. [27]M.S. Liang, C. Chang, Y. T. Yeow, C. Hu and R.W. Brodersen, “Creation and Termination of Substrate Deep Depletion in Thin Oxide MOS Capacitors by Charge Tunneling,” IEEE Electron Devices Letters IEEE Electron Device Lett., Vol. 4, pp. 350-352, 1983. [28]P. P. Apte and K. C. Saraswat, “Correlation of Trap Generation to Charge-to-breakdown (Qbd): A Physical Damage Model of Dielectric Breakdown,” IEEE Trans. Electron Devices, Vol. 41, pp. 1595-1601, 1994. [29]K. F. Schuegraf and C. Hu, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE Trans. Electron Devices, Vol. 41, pp. 761-187, 1994. [30]E. H. Nicollian and J. R. Brews, MOS physics and Technology, pp. 171-172, Wiley, New York, 2003. [31]R. F. Pierret and D. W. Small, “A Modified Linear Sweep Technique for MOS-C Generation Rate Measurements,” IEEE Trans. Electron Devices, Vol. 22, pp. 1051-1052, 1975. [32]S. M. Sze, Physics of Semiconductor Device, Wiley, New York, 1981. [33]C. Y. Liu, B. Y. Chen and T. Y. Tseng, “Deep Depletion Phenomenon of SrTiO3 Gate Dielectric Capacitor,” J. Appl. Phys., Vol. 95, pp. 5602-5607, 2004. [34]M. Houssa, M. Tuominen, M. Naili, V. Afanasev, A. Stesmans, S. Haukka and M. M. Heyns, “Trap-assisted Tunneling in High Permittivity Gate Dielectric Stacks,” J. Appl. Phys., Vol. 87, pp.8615-8620, 2000. [35]Randy Harris, modern physics 2ed edition, pp. 206-207, Pearson Addition Wesley, New York, 2008. [36]N M Ravindra and Jin Zhao, “Fowler-Nordheim Tunneling in Thin SiO2 Films,” Smart Mater. Struct., Vol. 1, pp. 197-201, 1992.
|