跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張倚偉
研究生(外文):Yi-Wei Chang
論文名稱:製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討
論文名稱(外文):Effect of Casting Solvents on Sedimentation in Metal-Organic Framework Mixed-Matrix Membranes and Related Gas Permeation Properties
指導教授:張博凱張博凱引用關係
指導教授(外文):Bor Kae Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:89
中文關鍵詞:金屬有機框架混合基質膜填料分佈黏度沉澱氣體滲透
外文關鍵詞:Metal-Organic FrameworkMMMsFiller distributionsViscositySedimentationgas permeation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
近來,氣體分離膜的技術正開始蓬勃發展,簡單、連續程序的特性,使分離膜的技術對工業用途上帶來低成本、環保和提高分離效率等優勢,其中,高分子膜對於天然氣的純化及分離另闢新興替代能源的選擇途徑。
金屬有機框架材料(metal-organic frameworks, MOFs) 作為填料並分散至高分子相中形成混合基質膜(mixed-matrix membranes, MMM),相較於純高分子膜有更好的分離效果,再者,金屬有機框架材料的有機鏈結使其與高分子間有更好的連接性,而在此研究中,我們使用MIL-53(Al) 作為填料。由於MIL-53(Al) 在水中維持結構穩定、不同環境下可調節孔洞大小(呼吸效應),以及對特定氣體的優異選擇性等優點,皆指出MIL-53(Al) 優良的特性並適合作為混合基質膜中的填料。
本研究利用在兩種不同溶劑、改變前驅液中高分子含量及製備混合基質膜,因而導致填料不同程度的沉降或聚集,並分析膜在氣體分離應用的潛力。混合基質膜的合成分為兩部分:以大孔(LP) 和窄孔(NP) 兩種形式的MIL-53(Al) 晶體合成,以及配製聚砜(PSF) 於不同的溶劑中,之後結合填料與高分子兩者形成最終的混合基質膜。
在此研究,MIL-53(Al)_NP 和MIL-53(Al)_LP分別展現出1153 m2 g-1, and 1231 m2 g-1的BET比面積,並皆檢測出微孔為主要組成。藉由掃描電子顯微鏡(SEM) 觀察到MIL-53(Al) 沉澱現象發生於低濃度前軀液製備而成的混合基質膜中,而由X-光繞射(XRD) 的結果證實了填料沉澱會造成峰值強度的明顯差異。此外,我們透過流變儀和差示掃描量熱分析儀(DSC) 測量的黏度和玻璃轉移溫度(Tg)之間的關係,並發現填料均勻分布使混合基質膜具有較高的玻璃轉移溫度,也與填料和高分子之間有更強的相互作用力。進一步測試MIL-53(Al)_NP作為填料的混合基質膜在氣體滲透應用上的表現,填料均勻分布並以氯仿製備的混合基質膜展現出最佳的CO2/N2選擇性22.71。另外,也觀察到滲透性質與填料分散形態的關係,填料沈積、聚集和均勻形態造成不同的氣體分子擴散路徑,也證明填料分散形態對氣體滲透有顯著的影響。
Membranes for gas separation have already become a promising field of technology. It offers a continuous and relatively simple process for industry and is also an economical, environmentally friendly and efficient separation method. Additionally, organic polymer membranes are one of the feasible options for separating natural gas from other components as an alternative energy source.
The addition of metal-organic frameworks (MOFs) to form mixed-matrix membranes (MMM) opens the door to enhanced separation performances over pure polymer systems as a result of the combined polymeric phase dispersed with hybrid fillers. MOFs interact well with the polymer due to its organic linkers, and in this work, we focus on MIL-53(Al) as a candidate filler because of several advantageous properties, including structural stability in water, breathing behavior for tunable pore opening in different environment, and outstanding selectivity for specific gases.
This research demonstrates the fabrication of mixed-matrix membranes with various contents of polymer in two different solvents to which led to different degrees of sedimentation or aggregation. Subsequent analysis investigates their potential in gas separation applications. The synthesis of MMM was divided into two parts: the synthesis of MIL-53(Al) crystals in two different forms which are large-pore (LP) form and narrow-pore (NP) form, and preparation of the polysulfone (PSF) in different solvents. Then, we combined the both resulting the final product.
In our studies, MIL-53(Al)_NP and MIL-53(Al)_LP show BET surface areas of 1153 m2g-1, and 1231 m2g-1 dominated by micropores. The morphology of the MMMs for MIL-53(Al) exhibit sedimentation of fillers at low concentration of precursor solutions which were characterized by scanning electron microscopy (SEM), while the results of X-ray diffraction (XRD) confirmed obvious discrepancy of intensity caused by sedimentation. Moreover, we investigated the relationship between viscosity and glass transition temperature (Tg) measured by rheometer and differential scanning calorimetry (DSC), respectively, where the highest Tg matched with a homogeneous morphology with stronger interaction between fillers and polymer. Further gas permeation measurements showed a promising CO2/N2 selectivity of 22.71 for homogenous membrane. Permeation properties of various preparations were also studied, revealing the influence of fillers distribution on gas permeation relating to different diffusion paths for gas molecules in sedimentation, aggregation, and homogeneous morphologies.
摘要 I
Abstract III
Acknowledgement V
Table of Content VI
List of Figures VIII
List of Tables XIII
Chapter 1 Background 1
1.1 Introduction 1
1.2 Review of Relevant Literature 4
1.3 Motivation 9
Chapter 2 Experimental 10
2.1 Chemical Compounds 10
2.2 Experimental Procedure 10
2.2.1 Synthesis of metal organic frameworks for MIL-53(Al) narrow pore and MIL-53(Al) large pore 10
2.2.2 Fabrication of Pure PSF Membranes and Mixed Matrix Membranes with Various Polymer Content and Different Solvents 12
2.2.3 Application of Single Gas Permeation Test for Membranes 15
2.3 Equipment Used 17
2.4 Material Characterizations 18
Chapter 3 Results and Discussion 22
3.1 Characteristics of fillers 22
3.1.1 Surface area of fillers 22
3.1.2 Morphology 25
3.1.3 X-ray diffraction 26
3.1.4 Thermogravimetric analysis 28
3.2 Characteristics of MMMs with MIL-53(Al)_NP as fillers 30
3.2.1 Viscosity of MMMs 30
3.2.2 Morphology and elemental distribution 32
3.2.3 X-ray diffraction 37
3.2.4 Glass transition temperature 41
3.2.5 Thermogravimetric analysis 43
3.3 Characteristics of MMMs with MIL-53(Al)_LP as fillers 46
3.3.1 Morphology and elemental distribution 46
3.3.2 X-ray diffraction 51
3.3.3 Glass transition temperature 54
3.3.4 Thermogravimetric analysis 56
3.4 Single gas permeation test for MMMs with MIL-53_NP as fillers 60
Chapter 4 Conclusions 66
Chapter 5 Future Work 68
References 69
[1] P. Pandey, R.S. Chauhan, Membranes for gas separation, Progress in Polymer Science, 26 (2001) 853-893.
[2] H. Verweij, Inorganic membranes, Current Opinion in Chemical Engineering, 1 (2012) 156-162.
[3] R.W. Baker, Future directions of membrane gas separation technology, Industrial and Engineering Chemistry Research, 41 (2002) 1393-1411.
[4] A.F. Ismail, P.Y. Lai, Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation, Separation and Purification Technology, 33 (2003) 127-143.
[5] H. Julian, I.G. Wenten, Polysulfone membranes for CO2/CH4 separation: State of the art, IOSR Journal of Engineering 2(2012) 484-495
[6] A.L. Ahmad, J.K. Adewole, C.P. Leo, A.S. Sultan, S. Ismail, Preparation and gas transport properties of dual-layer polysulfone membranes for high pressure CO2 removal from natural gas, Journal of Applied Polymer Science, 131 (2014) 40924.
[7] J.K. Adewole, A.L. Ahmad, S. Ismail, C.P. Leo, A.S. Sultan, Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation, Journal of Applied Polymer Science, 132 (2015) 42205.
[8] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science, 62 (1991) 165-185.
[9] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400.
[10] H.B. Tanh Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Trans, 41 (2012) 14003-14027.
[11] B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?, Chemical Society Reviews, 44 (2015) 2421-2454.
[12] J.P. Boom, Transport through zeolite filled polymeric membranes. Ph. D. Thesis, The Netherlands: University of Twente; 1994
[13] D.Q. Vu, W.J. Koros, S.J. Miller, T.-S. Chung, Mixed matrix membranes using carbon molecular sieves I. Preparation and experimental results, Journal of Membrane Science, 211 (2002) 311-334.
[14] A. Knebel, S. Friebe, N.C. Bigall, M. Benzaqui, C. Serre, J. Caro, Comparative study of MIL-96(Al) as continuous metal-organic frameworks layer and mixed-matrix membrane, ACS Applied Materials and Interfaces, 8 (2016) 7536-7544.
[15] S.R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H.B. Nulwala, D.R. Luebke, N.L. Rosi, E. Albenze, Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles, Journal of Materials Chemistry A, 3 (2015) 5014-5022.
[16] M. Valero, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers, Microporous and Mesoporous Materials, 192 (2014) 23-28.
[17] P. Burmann, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation, Chemical Engineering Science, 107 (2014) 66-75.
[18] P. Kumar, A. Deep, K.-H. Kim, Metal organic frameworks for sensing applications, TrAC Trends in Analytical Chemistry, 73 (2015) 39-53.
[19] J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: a new class of porous materials, Microporous and Mesoporous Materials, 73 (2004) 3-14.
[20] M. Mihaylov, K. Chakarova, S. Andonova, N. Drenchev, E. Ivanova, A. Sabetghadam, B. Seoane, J. Gascon, F. Kapteijn, K. Hadjiivanov, Adsorption Forms of CO2 on MIL-53(Al) and NH2-MIL-53(Al) As Revealed by FTIR Spectroscopy, The Journal of Physical Chemistry C, 120 (2016) 23584-23595.
[21] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chemical Society Reviews, 43 (2014) 6011-6061.
[22] R.C. Huxford, J. Della Rocca, W. Lin, Metal–organic frameworks as potential drug carriers, Current Opinion in Chemical Biology, 14 (2010) 262-268.
[23] P. Wu, J. Wang, C. He, X. Zhang, Y. Wang, T. Liu, C. Duan, Luminescent metal-organic frameworks for selectively sensing nitric oxide in an aqueous solution and in living cells, Advanced Functional Materials, 22 (2012) 1698-1703.
[24] P. Rallapalli, K.P. Prasanth, D. Patil, R.S. Somani, R.V. Jasra, H.C. Bajaj, Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)], Journal of Porous Materials, 18 (2010) 205-210.
[25] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chemistry, 10 (2004) 1373-1382.
[26] W.P. Mounfield, 3rd, K.S. Walton, Effect of synthesis solvent on the breathing behavior of MIL-53(Al), J Colloid Interface Sci, 447 (2015) 33-39.
[27] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 32 (2007) 483-507.
[28] J. Ahmad, M.-B. Hägg, Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation, Journal of Membrane Science, 427 (2013) 73-84.
[29] T.T. Moore, W.J. Koros, Non-ideal effects in organic–inorganic materials for gas separation membranes, Journal of Molecular Structure, 739 (2005) 87-98.
[30] M. Moaddeb, W.J. Koros, Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles, Journal of Membrane Science, 125 (1997) 143-163.
[31] N.C. Su, D.T. Sun, C.M. Beavers, D.K. Britt, W.L. Queen, J.J. Urban, Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes, Energy and Environmental Science, 9 (2016) 922-931.
[32] M.R. DeStefano, T. Islamoglu, S.J. Garibay, J.T. Hupp, O.K. Farha, Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites, Chemistry of Materials, 29 (2017) 1357-1361.
[33] M. Bader, MB-ruler, Iffezheim, Germany, 2002-2014
[34] H.B. Jeazet, C. Staudt, C. Janiak, A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone, Chemical Communications, 48 (2012) 2140-2142.
[35] J.O. Hsieh, K.J. Balkus Jr, J.P. Ferraris, I.H. Musselman, MIL-53 frameworks in mixed-matrix membranes, Microporous and Mesoporous Materials, 196 (2014) 165-174.
[36] A. Sabetghadam, B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C.L. Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, J. Gascon, Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance, Advanced Functional Materials, 26 (2016) 3154-3163.
[37] T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science, 296 (2002) 519-522.
[38] B. Zornoza, A. Martinez-Joaristi, P. Serra-Crespo, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures, Chemical Communications, 47 (2011) 9522-9524.
[39] H.B.T. Jeazet, C. Staudt, C. Janiak, A method for increasing permeability in O2/N2 separation with mixed-matrix membranes made of water-stable MIL-101 and polysulfone, Chemical Communications, 48 (2012) 2140-2142.
[40] T. Rodenas, M. van Dalen, P. Serra-Crespo, F. Kapteijn, J. Gascon, Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance, Microporous and Mesoporous Materials, 192 (2014) 35-42.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top