跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔千芬
論文名稱:複相關分析之運算與應用
論文名稱(外文):The Computation and Application of Multiple Correlation Analysis
指導教授:謝國文謝國文引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:管理科學系所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:區間估計檢定力分析假設檢定樣本數複相關分析Excel
外文關鍵詞:Interval estimationPower analysisHypothesis testingSample sizeMultiple correlation analysisExcel
相關次數:
  • 被引用被引用:3
  • 點閱點閱:780
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
迴歸分析已廣泛運用於管理、心理、組織、及策略等各領域研究中。然而,其中複相關係數分佈的結構十分複雜,許多研究者對直接相關的統計推論,如檢定力計算、區間估計、與所需求之樣本數等議題的不熟悉,故衍生許多經驗法則,但許多文獻証明由經驗法則所得之數據並不精確,故本研究主要針對研究者經常遇到的統計分析:假設檢定、檢定力計算、區間估計、以及樣本數等四大議題,利用Excel介面的親和性與普及性,配合電腦的迅速運算能力,提供便利與即時的統計分析軟體,以克服研究者因運算複雜而束手無策的窘境,並同時破除經驗法則的迷失,提供研究者一個精確的依據,以作為研究規劃與分析之用。
Regression analysis is widely used in many areas of science, and the literature is very extensive. Classical inferences on correlation coefficients are conducted mainly under the assumption that all variables have a joint multivariate normal distribution. Although the underlying normality assumption provides a convenient and useful setup, the resulting probability density function of the multiple correlation coefficients is notoriously complicated in form. Consequently, considerable attention has been devoted to the construction of useful approximations and rules of thumb for the inferential procedures of squared multiple correlation coefficient. In general, the rules of thumb fail to incorporate effect size and have often provided inaccurate results. In view of the ultimate aim of presenting exact procedures for correlation analysis and the extensive accessibility of Microsoft Excel software, the associated computer routines for hypothesis testing, interval estimation, power calculation, and sample size determination are developed. The statistical methods and available programs of multiple correlation analysis described in this article purport to enhance pedagogical presentation in academic curriculum and practical application in research.
中文摘要 i
英文摘要 ii
致謝辭 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、 研究動機與目的 1
二、 文獻探討 9
2.1 顯著性假設檢定與檢定力 9
2.1.1 顯著性假設檢定 9
2.1.2 檢定力 10
2.2 信賴區間 14
2.3 樣本數 16
2.4 信賴區間、檢定力與樣本數 17
2.5 系統軟體相關文獻 20
三、 研究方法 22
3.1 R2之機率函數 22
3.2 假設檢定 24
3.3 區間估計 27
四、 系統發展與功能 30
4.1 系統軟體 30
4.2 數據之精確度與嚴謹性 31
4.3 軟體功能介紹 42
五、 關鍵要素分析 45
5.1 檢定力與其他關鍵因素之間的關係 45
5.1.1 預測變數個數與檢定力 46
5.1.2 效應量及檢定力 48
5.1.3 顯著水準與檢定力 48
5.1.4 樣本數與檢定力 51
5.1.5 小結 51
5.2 樣本數與其他關鍵因素之間的關係 54
5.2.1 母體判定係數與樣本數 54
5.2.2 預測變數個數與樣本數 58
5.2.3 小結 60
5.3 信賴區間 61
5.3.1 預測變數個數與信賴區間 61
5.3.2 樣本數與信賴區間 64
5.3.3 小結 65
六、 文獻個案與探討 68
6.1 RHO-SQUARE 應用時機 68
6.2 資訊管理與電子商務相關研究之個案 70
6.3 組織行為與心理相關研究之個案 79
七、 結論 83
參考文獻 86
Alf, E. F., & Graf, R. G. (2002). A new maximum likelihood estimator for the population squared multiple correlation. Journal of Educational and Behavior Statistics, 27, pp. 223-235.
Algina, J., & Olejnik, S. (2003). Sample size tables for correlation analysis with applications in partial correlation and multiple regression analysis, Multivariate Behavioral Research, 38, pp. 308-323.
Algina, J., & Modulder, M. (2001). Sample sizes for confidence intervals on the increase in the squared multiple correlation coefficient. Educational and Psychological Measurement, 61, pp. 633-649.
Anderson, T. W. (1984). An introduction to multivariate statistical analysis (2nd ed.). New York: Wiley.
Ashford, S. J., Lee, C., & Bobko, P. (1989). Content, causes, and consequences of job insecurity: a theory-based measure and substantive test. Academy of Management Journal, 4, pp. 803-829.
Barnette, J. J. (2005). An excel program for computing confidence intervals for commonly used score reliability. Educational and Psychological Measurement, 65, pp. 980-983.
Baroudi, J. J., & Orlikowski, W. J. (1989). The problem of statistical power in MIS research. MIS Quarterly, March, pp. 87-106.
Bobko, P. (2001). Correlation and regression: Applications for industrial organizational psychology and management (2nd ed.). Thousand Oaks, CA: Sage.
Borkowski, S. C., Welsh, M. J., & Zhang, M. (2001). An analysis of statistical power in behavioral accounting research. Behavioral Research in Accounting, 13, pp. 63-84.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, pp. 155-159.
Cohen, J. (1994). The earth is round (p<.05). American Psychologist, 49, pp. 997-1003.
Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61, pp. 532-574.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13, pp. 319-339.
Deci, E. L., Connell, J. P., & Ryan, R. M. (1989). Self-Determination in a work organization. Journal of Applied Psychology, 74, pp. 580-590.
Ding, C. G. (1996). On the computation of the distribution of the square of the sample multiple correlation coefficient. Computational Statistics & Data Analysis, 22, pp. 345-350.
Dulebohn, J. H.,& Ferris, G.R. (1999). The role of influence tactics in perception of performance evaluations’ fairness. Academy of Management Journal, 42, pp. 288-303.
Dunlap, W. P., Xin, X., & Mayers, L. (2004). Computing aspects of power for multiple regression. Behavior Research Methods, Instruments, & Computers, 36, pp. 695-701.
Farh, J., & Dobbins, G. (1989). Effects of comparative performance information on the accuracy of self-ratings and agreement between self- and supervisor ratings. Journal of Applied Psychology, 74, pp. 606-610.
Fowler, R. L. (1985). Testing for substantive significance in applied research by specifying nonzero effect null hypotheses. Journal of Applied Psychology, 70, pp. 215-218.
Gatsonis, C., & Sampson, A. R. (1989). Multiple correlation: Exact power and sample size calculations. Psychological Bulletin, 106, pp. 516-524.
Green, S. B. (1991). How many subjects does it take to do a regression analysis? Multivariate Behavioral Research, 26, pp. 499-510.
Harris, R. J. (1985). A primer of multivariate statistics (2nd ed.) New York: Academic Press.
Kelley, K., & Maxwell, S. E. (2003). Sample size for multiple regression: obtaining regression coefficients that are accurate, not simply significant. Psychological Methods, 8, pp. 305-321.
Lee, Y. (1972). Tables of upper percentage point of the multiple correlation coefficient. Biometrika, 59, pp. 175-189.
Maxwell, S. E. (2000). Sample size and multiple regression analysis. Psychological Methods, 5, pp. 434-458.
Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: causes, consequences, and remedies. Psychological Methods, 9, pp. 147-163.
Mason, C. H., and Perreault, W. D. (1991). Collinearity, Power, and interpretation of multiple regression analysis. Journal of Marketing Research, 28, pp. 268-280.
Mazen, A., Graf, L., Lellogg, C., & Hemmasi, M. (1987). Statistical Power in Contempary Management Research. Academy of Management Journal, 30, pp. 369-380.
McCullough, B. D., & Wilson, B. (2005). On the accuracy of statistical procedures in Microsoft Excel 2003. Computational Statistics and Data Analysis, 49, pp. 1244-1252.
Mendoza, J. L., & Stafford, K. L. (2001). Confidence interval, power calculation, and sample size estimation for the squared multiple correlation coefficient under the fixed and random regression models: A computer program and useful standard tables. Educational and Psychological Measurement, 61, pp. 650-667.
Miller, D. (1988). Relating Porter’s business strategies to environment and structure: analysis and performance implications. Academy of Management Journal, 31, pp. 280-308.
Mood, A., & Grabill, F. (1963). Introduction to the theory of statistics. New York: McGraw-Hill.
Murphy, K. R., & Myors, B. (2004). Statistical power analysis - a simple and general model for tradition and modern hypothesis test (2nd ed.). NJ: Erlbaum.
Nunnally, J. C. (1978). Psychomertic theory (2nd ed.) New York: McGraw-Hill.
Pelled, L. H., & Xin, K. R. (1999). Down and out: an investigation of the relationship between mood and employee withdrawal behavior. Journal of Management, 6, pp. 875-895.
Pollard, P. (1993). How significant is “Significance”? In A Handbook for Data Analysis in the Behavior Sciences: Methodological Issues, edited by G. Keren and C. Lewis, pp. 449-460. Hillsdale, NJ: Lawrence Erlbaum Associates.
Richard, O. C. (2000). Racial diversity, business strategy, and firm performance: a resource-based view. Academy of Management Journal, 43, pp. 164-177.
Rothstein, H. R., Borenstein, M., Cohen, J., & Pollack, S. (1990). Statistical power analysis for multiple regression / correlation: a computer program. Educational and Psychological Measurement, 50, pp. 819-830.
Schmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in psychology: implications for the training of researchers. Psychological Methods, 1, pp. 115-129.
Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of studies? Psychological Bulletin, 105, pp. 309-316.
Shieh, G. (2006). Exact interval estimation, power calculation and sample size determination in normal correlation analysis. Psychometrika, 71(3), pp. 529-540.
Shih, H. P. (2004). An empirical study on predicting user acceptance of e-shopping on the web. Information & Management, 41, pp. 351-368.
Smithson, M. (2001). Correct confidence intervals for various regression effect sizes and parameters: The importance of noncentral distributions in computing intervals. Educational and Psychological Measurement, 61, pp. 605-532.
Steiger, J. H.,& Fouladi, R. T. (1992). R2: A computer program for interval estimation, power calculations, sample size estimation, and hypothesis testing in multiple regression. Behavioral Research Methods, Instruments, and Computers, 24, pp. 581-582.
Wampold, B. E., & Freund, R. D. (1987). Use of multiple regression in counseling psychology research: A flexible data- analytic strategy. Journal of Counseling Psychology, 34, pp. 372-382.
Wilcox, R. R. (1980). Some exact sample sizes for comparing the squared multiple correlation coefficient to a standard. Educational and Psychological Measurement, 40, pp. 119-124.
Wilkinson, L., and the Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, pp. 594-604.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top