跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2026/02/07 12:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖恩志
研究生(外文):En-Chih Liao
論文名稱:以Google Trends關鍵字搜尋量為基礎之台灣股市交易行為研究
論文名稱(外文):The Study of TAIEX Trading Behavior based on Search Volume for Keywords on Google Trends
指導教授:范敏玄范敏玄引用關係陳牧言陳牧言引用關係
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:Google Trends台灣股市搜尋量類神經網路
外文關鍵詞:Google TrendsTAIEXsearch volumeArtificial Neural Network
相關次數:
  • 被引用被引用:7
  • 點閱點閱:3039
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
預測股市走勢一直是投資人所努力的方向,不論是基本分析或者是技術分析,所想要達到的目的無非就是了解股市的變化規則,以作為進出股市的依據。本研究以網際網路搜尋引擎的搜尋量Google Trends為分析對象,透過Google Trends的搜尋量與台灣加權股價指數研究分析之間的相關性。利用Google Trends所提供的關鍵字搜尋量,進行相關性檢定與單根檢定,再將所得到的關鍵字分別進行實驗一-機器學習與實驗二-搜尋趨勢中做分析,經過實證分析後,發現在實驗一中的類神經網路表現優於支援向量機與決策樹,進而挑選類神經網路作為與實驗二的搜尋趨勢方法做比較,透過報酬值計算的比較分析,發現搜尋趨勢的報酬值優於類神經網路的報酬值。因此,本論文發現以台灣50指數公司名稱作為搜尋關鍵字與台灣加權股價指數的漲跌存在關聯性。

Investors have always tried to predict the stock market trend. Whether it is fundamental analysis or technical analysis, what they want is nothing more than to understand the rule of changes in the stock market and use it as a basis to trade in the stock market. This study used the amount of Internet search on Google Trend and analyzed the correlation between the search volume on Google Trend and Taiwan Weighted Stock Index. The keyword search volume provided by Google Trend was used in the correlation test and the unit root test. Then the keywords obtained were analyzed in two experiments – first, machine learning, and second, search trend. After empirical analysis, it was found that neural network in experiment one performed better than support vector machine and decision trees. Therefore, neural network was selected to compare with the search trend in the second experiment. Through comparative analysis of calculation of return values, it was found that the return value in search trend is higher than that of the neural network. Therefore, this paper revealed that there was a correlation between using company names of Taiwan 50 Index as search keywords and the rise and fall of TAIEX index.

中文摘要 I
英文摘要 II
誌謝 III
表目錄 VI
圖目錄 VIII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 論文架構 4
第二章 文獻回顧 6
第一節 Google Trends 6
第二節 恆定性檢定 9
第三節 類神經網路 11
第三章 研究方法 16
第一節 研究架構 16
第二節 Pearson相關檢定 18
第三節 ADF、PP檢定 20
第四節 倒傳遞類神經網路 22
第五節 支援向量機 24
第六節 決策樹 25
第七節 搜尋趨勢 26
第四章 實證分析 28
第一節 研究樣本與研究期間 28
第二節 Google Trends關鍵字與台股加權指數之Pearson相關檢定 33
第三節 Google Trends關鍵字與台股加權指數之恆定性檢定 35
第四節 機器學習之分析結果 42
第五節 搜尋趨勢之分析結果 44
第六節 實驗結果討論 45
第五章 結論與未來展望 46
第一節 結論 46
第二節 研究限制與未來發展 46
參考文獻 48
附錄1 53
附錄2 55


英文部分
Aouadi, A., Arouri, M., &; Teulon, F. (2013). Investor attention and stock market activity: Evidence from France. Economic Modelling, 35, 674-681.

Breiman, L., Friedman, J., Stone, C. J., &; Olshen, R. A. (1984). Classification and regression trees. CRC press.

Broomhead, D. S., &; Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and adaptive networks (No. RSRE-MEMO-4148).ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN(UNITED KINGDOM).

Choi, H., &; Varian, H. (2012). Predicting the present with google trends.Economic Record, 88(s1), 2-9.

Cortes, C., &; Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

De Villiers, J., &; Barnard, E. (1993). Backpropagation neural nets with one and two hidden layers. Neural Networks, IEEE Transactions on, 4(1),136-141.

Desai, J., Desai, K. J., Joshi, N. A., Juneja, A., &; Dave, A. R. (2011).Forecasting of Indian stock market index S&;P CNX Nifty 50 using artificial intelligence. Behavioral &; Experimental Finance eJournal, 3(79).

Dickey, D. A., &; Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.

Dzielinski, M. (2012). Measuring economic uncertainty and its impact on the stock market. Finance Research Letters, 9(3), 167-175.

Frieder, L., &; Subrahmanyam, A. (2005). Brand perceptions and the market for common stock. Journal of financial and Quantitative Analysis, 40(01), 57-85.

Gencay, R. (1996). Non-linear prediction of security returns with moving average rules. Journal of Forecasting, 15(3), 165-174.

Google Trends,www.google.com/trends/.

Granger, C. W., &; Newbold, P. (1974). Spurious regressions in econometrics. Journal of econometrics, 2(2), 111-120.
Grodinsky, J. (1953), Investments, New York: Ronald Press Company.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biological cybernetics, 23(3), 121-134.

Gunn III, J. F., &; Lester, D. (2013). Using google searches on the internet to monitor suicidal behavior. Journal of affective disorders, 148(2), 411-412.

Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the national academy of sciences, 81(10), 3088-3092.

Joseph, K., Babajide Wintoki, M., &; Zhang, Z. (2011). Forecasting abnormal stock returns and trading volume using investor sentiment:Evidence from online search.International Journal of Forecasting, 27(4), 1116-1127.

Karamé, F., &; Fondeur, Y. (2012). Can Google Data Help Predict French Youth Unemployment? (No. 12-03). Centre d''Études des Politiques Économiques (EPEE), Université d''Evry Val d''Essonne.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological cybernetics, 43(1), 59-69.

Kosko, B. (1988). Bidirectional associative memories. Systems, Man and Cybernetics, IEEE Transactions on, 18(1), 49-60.

LIBSVM -- A Library for Support Vector Machines
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/#nuandone).

Nelson, C. R., &; Plosser, C. R. (1982). Trends and random walks in macroeconmic time series: some evidence and implications. Journal of monetary economics, 10(2), 139-162.

Phillips, P. C., &; Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.

Preis, T., Reith, D., &; Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences, 368(1933), 5707-5719.

Preis, T., Moat, H. S., &; Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific reports, 3.

Quinlan, J. R. (1993). C4. 5: programs for machine learning (Vol. 1). Morgan kaufmann.Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., &; Riedl, J. (1994,October). GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186). ACM.

Rosenblatt, F.(1958).The perceptron: a probabilistic model for information storage and organization in the brain.Psychological review, 65(6), 386.

Rumelhart, D. E., Hinton, G. E., &; Williams, R. J. (1986). Learning Internal Representations by Error Propagation, Parallel Distributed Processing, Explorations in the Microstructure of Cognition, ed. DE Rumelhart and J. McClelland. Vol. 1. 1986.Said, S. E., &; Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599-607.

Smith, G. P. (2012). Google Internet search activity and volatility prediction in the market for foreign currency. Finance Research Letters, 9(2), 103-110.

Takeda, F., &; Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance Journal.

Van den Bout, D. E., &; Miller III, T. K. (1990). Graph partitioning using annealed neural networks. Neural Networks, IEEE Transactions on, 1(2),192-203.

Vlastakis, N., &; Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking &; Finance, 36(6), 1808-1821.
Watanabe, T., &; Iwata, K. (2009). Estimation for Up/Down Fluctuation of Stock Prices by Using Neural Network. In Best Practices for the Knowledge Society. Knowledge, Learning, Development and Technology for All (pp. 171-178). Springer Berlin Heidelberg.
中文部分
台灣50指數WIKI,
http://zh.wikipedia.org/wiki/%E8%87%BA%E7%81%A350%E6%8C%87%E6%95%B8
台灣證券交易所,http://www.twse.com.tw/ch/index.php
朱正修. (2004). 台灣股市與國際股市連動性之研究. 國立成功大學統
計系研究所碩士論文.
李育叡. (2011). 應用倒傳遞類神經網路於台灣 50 指數預測之最佳化
模式分析. 中興大學應用數學系所學位論文.
林美珍. (2012). 行為財務學. 臺北市:華泰文化.
張茹敏. (2013). 人民幣與美國總體經濟之實證研究. 臺灣大學國際企
業學研究所學位論文.
張愷凌. (2009). 景氣循環、總體經濟變數與台灣股價指數的關係性研
究. 交通大學管理學院碩士在職專班財務金融組學位論文.
陳國玄. (2004). 人工神經網路與統計方法應用於台灣上市電子類股價
指數預測與分類之研究. 國立成功大學統計系研究所碩士論文.
黃旭峰. (2004). 以技術分析法則與公司特性選股之投資績效. 東海大
學管理碩士學程在職進修專班論文.
葉怡成. (2009). 類神經網路模式應用與實作. 臺北市: 儒林圖書.
楊浩彥, 郭迺鋒,&; 林政勳. (2013). 實用財金計量方法EViews之應用.
臺北市:雙葉書廊
楊智凱. (2011). 台灣加權指數與上海股價指數關連之研究. 中興大學
應用經濟學系所學位論文.
賴書芸. (2001). 合併報表基本分析投資策略績效之研究. 國立成功大
學會計學系碩士論文.
薛凱安. (2013). 股市羊群效應: 以日本, 韓國, 台灣股市為例. 淡江大
學財務金融學系碩士班學位論文.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊