跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 05:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周聖凱
研究生(外文):Chou, Sheng-Kai
論文名稱:極音速進氣道隔離段於四馬赫條件下之分析與最佳化設計
論文名稱(外文):Analysis and Optimization Design of a Scramjet Inlet-Isolator Model in Mach 4
指導教授:戴昌賢戴昌賢引用關係
指導教授(外文):Tai, Chang-Hsien
口試委員:徐子圭徐嘉偉苗君易張克勤戴昌賢
口試委員(外文):Hsu, Uzu-KueiHsu, Chia-WeiMiao, Chun-IChang, Ke-ChinTai, Chang-Hsien
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:98
中文關鍵詞:極音速進氣道震波側壓方轉圓最佳化
外文關鍵詞:Hypersonic inletShock waveSidewallRectangular-to-ellipticalOptimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在極音速飛行的發展中,超燃衝壓發動機為目前極音速飛行動力系統的主要選擇之一。為了與燃燒效率更好的橢圓/圓形燃燒室進行結合,進氣道隔離段出口截面勢必進行橢圓/圓形的變化。本研究主要針對三維側壓極音速進氣道進行數值分析,比較下列算例的流場及進氣道性能,以供未來設計參考:(1)出口面積及高寬比相同之矩形出口與橢圓出口、(2)相同出口面積,不同橢圓出口高寬比、(3)正圓出口下,不同出口面積、(4)結合最佳化設計,探討正圓出口進氣道隔離段的截面變化對總壓恢復的影響。
本研究採用數值模擬方法中的有限體積法求解Navier-Stokes方程式,搭配Spalart-Allmaras紊流模組進行穩態的運算,探討不同方案之進氣道於隔離段內的流場。
在四馬赫的速度下,(1)相同的出口面積與高寬比,橢圓出口之總壓恢復係數較矩形出口高1.4%。(2)橢圓出口在不同高寬比下的出口參數相近,其中1:2有最高的總壓恢復係數,與矩形出口相比,提升3.57%;(3)增加出口面積使出口流速增加,在總壓恢復係數上有較好的表現,較原面積提升1.73%。(4)而在最佳化方面,總壓恢復係數比初始算例提高12.5%。
Scramjet is an engine mainly used in the hypersonic flight regime. In order to get high performance combustion efficiency, the inlet-isolator have to adapt configuration from rectangular into circle or elliptical. The main purpose of this study focuses on the design and flowfield of the sidewall compression in a hypersonic inlet as following: (1) change the shape of outlet from rectangular to elliptical with the outlet area and aspect ratio are fixed; (2) different aspect ratio of elliptical outlet isolator with the area of outlet is fixed; (3) different area of circle outlet isolator with the shape of the outlet is fixed; and (4) to consider the optimal design, to study the total pressure recovery (P_T) by changing the cross section of inlet-isolator.
In this study, we applied numerical simulation method of the finite volume method to solve Navier-Stokes equations with Spalart-Allmaras turbulent model to simulate cases on the flowfield of the inlet-isolator.
At Mach No. 4: (1) the recover coefficient (P_T) of the elliptical outlet case is more than rectangular case about 1.4% in the same outlet aspect ratio (H/S); (2) the aspect ratio of 1:2 got the highest P_T than others in all elliptical cases, and the P_T increased 3.57% more than rectangular case; (3) the P_T increased 1.73% than original case while the outlet area increased; (4) for the optimal design, the P_T increased 12.5% than original case.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
符號索引 XI
第一章 前言 1
1.1 研究動機 1
1.2 研究背景 2
1.2.1 發動機演進歷史 2
1.2.1 噴射發動機種類 3
1.2.2 衝壓發動機進氣道 4
1.3 超音速進氣道基本流場 11
1.3.1 震波 12
1.3.2 總壓恢復係數 13
1.3.3 增壓比 13
1.4 文獻回顧 15
1.5 研究目的 19
第二章 研究方法 20
2.1 數學模式(Mathematic Model) 21
2.1.2 統御方程式 21
2.1.3 紊流方程式 22
2.2 數值方法(Numerical Technique) 23
2.3 數值最佳化(Numerical Optimization) 24
2.4 最佳化軟體—SmartDo 24
2.4.1 ANSYS Workbench參數輸出與設定 25
2.4.2 SmartDO參數設定 26
第四章 物理模型與格點系統 31
3.1 物理模型 31
3.1.1 矩形出口進氣道模型 31
3.1.2 橢圓出口進氣道模型 31
3.1.3 最佳化分析之正圓出口模型 31
3.2 邊界條件 34
3.3 格點驗證 36
第四章 結果與討論 44
4.1 程式驗證 44
4.2 矩形出口進氣道流場分析 46
4.2.1 二維與三維流場比較 51
4.3 橢圓出口進氣道流場分析 55
4.3.1 不同高寬比之橢圓出口進氣道流場比較 60
4.4 矩形出口與橢圓出口進氣道比較 70
4.5 出口面積大小對進氣道之影響 78
4.6 最佳化分析之算例比較 85
第五章 結論與未來研究 92
5.1 結論 92
5.2 未來展望 92
參考文獻 94
附錄A 97
作者簡介 98
[1] Hsin-Luen Tsai, “Research and Development of Hybrid Rocket Propulsion System in Taiwan ,” Department of Electronic Engineering, Advanced Engine Research Center Kao Yuan University, Taiwan, R.O.C.
[2] 許智能,「淺談氣渦輪之應用與發展-陸、海、空-」,國立勤益科技大學,冷凍空調與能源系。
[3] 俞剛,2013,「超聲速燃燒與高超聲速推進」,北京,力學進展第43卷第5期。
[4] Michael K. Smart, “Scramjet Inlets,” Chair of Hypersonic Propulsion. Centre for Hypersonics, The University of Queensland.
[5] Trexler, C. A., “Performance of an Inlet for an integrated Scramjet Concept,” Journal of Aircraft11(9): 589, 1974.
[6] 尤延铖、梁德旺等人,2009,「高超聲速三維內收縮式進氣道/乘波前體一體化」,力學進展第39卷第5期。
[7] Dean Andreadis, “Scramjet engines enabling the seamless integration of air & space operation,” Pratt & Whitney Space Propulsion, West Palm Beach, FL, 33410-9600.
[8] 曾品蒨,2012,「極音速進氣道流場震波與邊界層交互作用研究」,碩士論文,逢甲大學,航太與系統工程學系。
[9] 王寶國、劉淑艷、黃偉光,「氣體動力學」,北京理工大學出版社,第2章。
[10] 蔡國飆、徐大軍,「超高聲速飛行器技術」,北京,科學出版社,第3章。
[11] 賀武生,2005,「超燃衝壓發動機研究綜述」,火箭推進第31卷第1期。
[12] Antonnio Ferri and Louis M. Nucci, “Preliminary Investigation of a New Type of Supersonic Inlet,” National Advisory Committee For Aeronautics, Technical note 2286.
[13] K. Oswatitsch, “Pressure Recovery for Missiles with Reaction Propulsion at High Supersonic Speeds,” TM 1140 NACA, 1947.
[14] M. K. Smart, “Optimization of two dimensional scramjet inlets,” J. Aircr. 36(2), 430–433 (1999).
[15] Billig F S. “SCRAM-a supersonic combustion ramjet missile, ”Johns Hopkins University, Laurel Maryland.1993. AIAA Paper, AIAA-1993-2329, 1993.
[16] Van Wie D. & Molder S. “Applications of Busemann inlet designs for flight at hypersonic speeds,” AIAA Paper, AIAA-1992-1210, 1992.
[17] Trexler, C. A., “Inlet Performance of the Integrated Langley Scramjet Module (Mach 2.3 to 7.6),” AIAA 1975-1212, 1975.
[18] Gaitonde, D. V., Malo-Molina, F.J., Croker, B., and Ebrahimi H. B., “The Flowfield Structure in Generic Inward-Turning-Based Propulsion Flowpath Components” 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, July 2007.
[19] Croker, B. A., “On the Design of Hypersonic Inward-Turning Inlets” U.S. Air Force Research Lab. Rept. AFRL-RB-WP-TP-2009-3016,June 2007.
[20] Billig F S, Jacobsen L S. “Comparison of planar and axisymmetric flowpaths for hydrogen fueled space access vehicles. ” AIAA Paper, AIAA-2003-4407, 2003
[21] M. K. Smart “Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition, ”Journal of Propulsion and Power, 15(3): 408-416, 1999 .
[22] M. K. Smart “Mach 4 Performance of Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition” NASA Langley Research Center, Hampton, Virginia. Journal of propulsion and power Vol. 17, No. 2, March–April 2001.
[23] 金志光、張堃元,2008,「典型二元高超聲速進氣道與側壓式進氣道的性能對比」,航空動力學報23(9):1553-1560。
[24] Ray T. and Smith W., “A Surrogate Assisted Parallel Multiobjective Evolutionary Algorithm for Robust Engineering Design”, Engineering Optimization, Vol. 38, No. 8, pp. 997-1011, 2006.
[25] Ray, T., Isaacs, A. and Smith, W., “Physical Insight into Scramjet Inlet Behavior Via Multi-Objective Design Optimization objective optimisation using surrogate assisted evolutionary algorithm”, Multi-objective Optimization: Techniques and Applications in Chemical Engineering, pp. 131-151, World Scientific, Singapore, 2008.
[26] Ogawa, H., Alazet, Y., Boyce, R. R., Isaacs, A. and Ray, T., “Design Optimisation of Axisymmetric Scramjets for Access-to-Space”, in Proceedings of the 9th Australian Space Science Conference 2009, Sydney, Sep 2009.
[27] Ogawa, H., Boyce, R. R., Isaacs, A. and Ray, T., “Multi-Objective Design Optimisation of Inlet and Combustor for Axisymmetric Scramjets”, The Open Thermodynamics Journal, in press, 2010
[28] Hideaki Ogawa and Russell R. Boyce. "Physical Insight into Scramjet Inlet Behavior via Multi-Objective Design Optimization", AIAA Journal, Vol. 50, No. 8 (2012), pp. 1773-1783.
[29] 劉雄、王翼、梁劍寒,2014,「方轉圓對三維側壓進氣道的流動特性影響」航空學報, vol. 35, Nov 2014。
[30] 陳申岳,2011,「數值最佳化設計在旋轉機械上之應用」,迴旋機械之震噪檢測研討會。
[31] 吳文玉,2013,「超音波振動系統在高溫下之最佳化設計」,碩士論文,國立交通大學,機械工程學系。
[32] 唐榕崧等,「柔性接頭最佳化設計」。
[33] CFD Analysis of the CIAM/NASA Scramjet, C.G. Rodriguez, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, AIAA 2002-4128, 7-10, July 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top