余志儒。1994。洋香瓜品種對棉蚜之抗性及其對日光蜂發育與繁殖之影響。國立中興大學碩士論文。69頁。余志儒。2009。乳化大豆油對棉蚜 (同翅目:常蚜科) 之致死效果。台灣農業研究 58(4):265–272。
余志儒、陳炳輝、劉玉章。1999。棉蚜小蜂在三種洋香瓜品種上之發育、繁殖、氣味偏好及對棉蚜族群之影響。中華昆蟲19:101–111。邱政發。2007。蚜蟲的生物防治。苗栗區農業專訊。40:5–6。林立。2008。菸草浸液防治棉蚜之研究。花蓮區農業專訊 63:9–11。林秀芬、劉顯達。2008。蚜蟲天敵知多少。科學發展 430:49–52。
陳昇寬。2009。棉蚜。植物保護圖鑑系列19─甜瓜保護。p.12–-14。
陶家駒 1990 台灣省蚜蟲誌 台灣省立博物館印 台北,台灣。327pp.
彭仁君、劉玉章。2001。棉蚜小蜂寄生作用對棉蚜發育、存活與繁殖的影響。植保會刊43: 39–46。
Agrawal, A. A., A. Janssen, J. Brun, M. A. Posthumus, and M. W. Sabelis. 2002. An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol. Lett. 5: 377–385.
Allsopp, E., G. J. PrinslooL, E. Smart, and S. Y. Dewhirst. 2014. Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on plum blossoms. Arthropod-Plant Interactions 8: 421–427.
Blackman, R. L., and V. F. Eastop. 1984. Aphids on the world's crops: an identification and information guide. Wiley, New York. 476 pp.
Bolter, C. J., M. Dicke, J. J. A. Van Loon, J. H. Visser, and M. A. Posthumus. 1997. Attraction of Colorado potato beetles to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23: 1003–1023.
Campbell, C. A. M., J. Pettersson, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock. 1993. Spring migration of Damson-Hop aphid, Phorodon humuli (Homoptera: Aphididae), and summer host plant-derived semiochemicals released on feeding. J. Chem. Ecol. 19: 1569–1576.
Chan, C. K., A. A. Forbes, and D. A. Raworth. 1991. Aphid-transmitted viruses and their vectors of the world. Agric. Can. Res. Branch Tech Bull. 3E: 1–216.
Chang, Y. M., C. H. Hsiao, W. Z. Yang, S. H. Hseu, Y. J. Chao, and C. H. Huang. 1987. The occurrence and distribution of five cucurbit viruses on melon and watermelon in Taiwan. J. Agric. Res. China. 36: 389–397.
De Boer, J. G., and M. Dicke. 2004. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J. Chem. Ecol. 30: 255–271.
Dicke, M. 1988. Prey preference of the phttoseiid mite Typhlodromus pyri: 1. Response to volatile kairomones. Exp. Appl. Acarol. 4: 1–13.
Dicke, M. 1999. Evolution of induced indirect defense of plants, pp. 62–88. In R. Tollrian and C. J. Harvell (eds.), The ecology and evolution inducible defenses. Princeton University press, New Jersey 395 pp.
Dicke, M. 2015. Herbivore–induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects. J. Indian Inst. Sci. 95: 35–42.
Dicke, M. and I. T. Baldwin. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15:167–175.
Dicke, M., and M. W. Sabelis. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zoo. 38: 148–165.
Dicke, M., M. W. Sabelis, J. Takabayashi, J. Bruin, and M. A. Posthumus. 1990. Plant strategies of manipulating predatory-prey interactions through alleochemicals: prospects for application in pest control. J. Chem. Ecol. 16: 3091–3118.
Dicke, M., T. A. Van Beek, M. A. Posthumus, N. Ben Dom, H. Van Bokhoven, and A. De Groot. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production. J. Chem. Ecol. 16: 381–396.
Dicke, M., J. Takabayashi,M. A. Posthumus, C. Schutte, and O. E. Krips. 1998. Plant-phytoeiid interactions mediated by prey-induced plnat volatiles: variation in production of cues and variation in responses of predatory mites. Exp. Appl. Acarol. 22: 311–333.
Dicken, J. C. 2001. Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Afric. For. Entomol. 2: 167–172.
Dieryckx, C., V. Gaudin, J. W. Dupuy, M. Bonneu, V. Girard, and D. Job. 2015. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. Front. Plant Sci. 6: 859.
Dong, Y. J., and S. Y. Hwang. 2016. Evaluation of the effectiveness of four herbivore-induced plant volatiles on attracting natural enemies. J. Taiwan Agric. Res. 65: 173–183.
Drukker, B., J. Bruin, and M. W. Sabelis. 2000. Anthocorid predators learn to associated herbivore induced plant volatiles with presence or absence of prey. Physiol. Entomol. 25: 260–265.
Gadino, A. N., V. M. Walton, and J. C. Lee. 2012. Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biol. Control. 63: 48–55.
Geervliet, J. B. F., M. A. Posthumus, L. E. M. Vet, and M. Dicke. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested food plants of Pieris species. J. Chem. Ecol. 23: 2935–2954.
Glinwood, R., and J. Pettersson. 2000. Host plant choice in Rhopalosiphum padi spring migrants and the role of olfaction in winter host leaving. Bull. Entomol. Res. 90: 57–61.
Gore, J., D. Cook, A. Catchot, B. R. Leonard, S. D. Steward, G. Lorenz, and D. Kerns. 2013. Cotton aphid (Heteroptera: Aphididae) susceptibility to commercial and experimental insecticides in the Southern United States. J. Econ. Entomol. 106: 1430–1439.
Groux, R., O., Hilfiker, C., Gouhier-Darimont, M. F. G. V. Peñaflor, M. Erb, and P. Reymond. 2014. Role of Methyl Salicylate on Oviposition Deterrence in Arabidopsis thaliana. J. Chem. Ecol. 40: 754–759.
Guerrieri, E. and M. C. Digilio. 2008. Aphid-plant interactions: a review. J. Plant Interact. 3:223–232.
Hardie, J., R. Isaacs, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock. 1994. Methyl salicylate and (−)–(1R, 5S) –myrtenal are plant–derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J. Chem. Ecol. 20: 2847–2855.
Hatano, E., G. Kunert, J. P. Michaud, and W. W. Weisser. 2008. Chemical cues mediating aphid location by natural enemies. Eur. J. Entomol. 105:797–806.
Henning, J. A., Y. S. Peng, M. A. Montague, and L. R. Teuber. 1992. Honey bee (Hymenoptera: Apidae) behavioral response to primary Alfalfa (Rosales: Fabaceae) floral volatiles. J. Econ. Entomol. 85: 233–239.
Hilker, M. and T. Meiners. 2011. Plants and insect eggs: how do they affect each other? Phytochemistry. 72: 1612–1623.
Hsu, J. C., L. G. Li, and H. T. Feng. 2005. Susceptibility of cowpea aphid (Aphis craccivora), cotton aphid (Aphis gossypii), turnip aphid (Lipaphis erysimi), and green peach aphid (Myzus persicae) to several insecticides in Taiwan. Plant Prot. Bull. 47: 115–127.
James, D. G. 2003a. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J. Chem. Ecol. 29: 1601–1609.
James, D. G. 2003b. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ. Entomol. 32: 977–982.
James, D. G. 2005. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J. Chem. Ecol. 31: 481–495.
James, D. G. 2006. Methyl salicylate is a field attractant for the goldeneyed lacewing, Chrysopa oculata. Biocontrol Sci. Technol. 16: 107–110.
James, D. G., and T. R. Grasswitz. 2005. Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. BioControl 50: 871–880.
James, D. G., and T. S. Price. 2004. Field-testing of methyl-salicylate for recruitment and retention of beneficial insects in grapes and hops. J. Chem. Ecol. 30: 1613–1628.
Kalaivani, K., M. M. Kalaiselvi, S. Senthi-Nathan. 2016. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci. Rep. 6: 34498.
Kant, M. R., W. Jonckheere, B. Knegt, F. Lemos, J. Liu, B. C. J. Schimmel, C. A. Villarroel, L. M. S. Ataide, W. Dermauw, J. J. Glas, M. Egas, A. Janssen, T. Van Leeuwen, R. C. Schuurink, M. W. Sabelis, and J. M. Alba. 2015. Mechanisms and ecological consequence of plant defence induction and suppression in herbivore communities. Ann. Bot. 115: 1015–1051.
Kaygin, T. A., G. Gorur, and F. Cota. 2008. Contribution to aphid (Homoptera: Aphididae) species damaging on woody plants in Bartin, Turkiye. Int. J. Nat. Eng. Sci. 2: 83–96.
Kerns, D. L., and M. J. Gaylor. 1992. Insecticide resistance in field populations of cotton aphid (Homoptera: Aphididae). J. Econ. Entomol. 85: 1–8.
Kessler, A., and I. T. Baldwin. 2001. Function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144.
Kessler, A., and I. T. Baldwin. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53: 299–328.
Lee, J. C. 2010. Effect of methyl salicylate-based lures on beneficial and pest arthropods in strawberry. Chem. Ecol. 39: 653–660.
Mainak, B. 2017. The push-pull strategy: A new approach to the eco-friendly method of pest management in agriculture. J. Entomol. Zool. Stud. 5: 604–607.
Mallinger, R. E., D. B. Hogg, and C. Gratton. 2011. Methyl Salicylate Attracts Natural Enemies and Reduces Populations of Soybean Aphids (Hemiptera: Aphididae) in Soybean Agroecosystems. J. Econ. Entomol. 104: 115–124.
Mithofer, A., and W. Boland. 2012. Plant defense against herbivores: chemical aspects. Ann. Rev. Plant Biol. 63: 431–450.
Mumm, R. & Dicke, M. 2010. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zoo. 88: 628–667.
Ninkovic, V., E. Ahmed, R. Glinwood, and J. Pettersson. 2003. Effects of two types of semiochemicals on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agric. For. Entomol. 5: 27–33.
Orre, G. U. S., S. D. Wratten, M. Jonsson, and R. J. Hale. 2010. Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. Biol. Control 53: 62–67.
Ozawa, R., T. Shimoda, M. Kawaguchi, G. Arimura, J. Horiuchi, T. Nishioka, and J. Takabayashi. 2000. Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J. Plant Res. 113: 421–433.
Pappas, M. L., C. Broekgaarden, G. D. Broufas, M. R. Kant, G. J. Messelink, A. Steppuhn, F. Wäckers, N. M. Van Dam. 2017. Induced plant defences in biological control of arthropod pests: a double-edged sword. Pest Manag. Sci. 73: 1780–1788.
Park, S.W., E. Kaimoyo, D. Kumar, S. Mosher, and D. F. Klessig. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113–116.
Peñaflor, M. F. G. V., and J. M. S. Bento. 2013. Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotrop. Entomol. 42: 331–343.
Pettersson, J., J. A. Pickett, B. J. Pye, A. Quiroz, L. E. Smart, L. J. Wadhams, and C. M. Woodcock. 1994. Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera, Aphididae), and other aphids in cereal fields. J. Chem. Ecol. 20: 2565–2574.
Pierik, R., C. L. Ballare, and M. Dicke. 2014. Ecology of plant volatiles: taking a plant community perspective. Plant Cell Environ. 37: 1845–1853.
Rodriguez-Saona, C., I. Kaplan, J. Braasch, D. Chinnasamy and L. Williams. 2011. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biol. Control 59: 294–303.
Schoonhoven L. M., J. J. A. van Loon, and M. Dicke. 2005. Insect-Plant Biology. Oxford University Press. United Kingdom. 400 pp.
Scutareanu, P., B. Drukker, J. Bruin, M. A. Posthumus, and M. W. Sabelis. 1997. Volatiles from Psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. J. Chem. Ecol. 23: 2241–2260.
Shimoda, T., R. Ozawa, G. I. Arimura, J. Takabayashi and T. Nishioka. 2002. Olfactory responses of two specialist insect predators of spider mites toward plant volatiles from lima bean leaves induced by jasmonic acid and/or methyl salicylate. Appl. Entomol. Zool. 37: 535–541.
Shu, T. C. 1980. Contributions to the study of aphididae of Taiwan. National Taiwan University press. Taipei. 283 pp. (in Chinese with english abstract )
Shulaev, V., P. Silverman, and I. Raskin. 1997. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385: 718 –721.
Simpson, M., G. M. Gurr, A. T. Simmons, S. D. Wratten, D. G. James, G. Leeson, H. I. Nicol, and G. U. S. Orre-Gordon. 2011a. Attract and reward: Combining chemical ecology and habitat manipulation to enhance biological control in field crops. J. Appl. Ecol. 48: 580–590.
Simpson, M., G. M. Gurr, A. T. Simmons, S. D. Wratten, D. G. James, G. Leeson, H. I. Nicol, and G. U. S. Orre-Gordon. 2011b. Field evaluation of the 'attract and reward' biological control approach in vineyards. Ann. Appl. Biol. 159: 69–78.
Tao, C. C. 1972. Integrated control report of cruciferous vegetables aphids. Taiwan Agricul. 8: 140–154.
Van Poecke, R. M. P., and M. Dicke. 2004. Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol. 6: 387–401.
Vergnes , S. N. Ladouce, S. Fournier, H. Ferhout, F. Attia, and B. Dumas. 2014. Foliar treatments with Gaultheria procumbens essential oil induce defense responses and resistance against a fungal pathogen in Arabidopsis. Front Plant Sci. 23: 477.
Vinson, S. B. 1976. Host selection by insect parasitoids. Ann. Rev. Entomol. 21:109–133.
Vlot, A. C., D. F. Klessig, and S.W. Park. 2008. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol. 11: 436 –442.
Wimer, A. F., T. P. Kuhar, C. C. Brewster, and C. R. Philips. 2014. Population dynamics of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae): Measuring the effects of methyl salicylate and predator recruitment in potato. J. Entomol. Sci. 49:110–120.
Woods, J. L., D. G. James, J. C. Lee, and D. H. Gent. 2011. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards. Exp. Appl. Acarol. 55: 401–416.
Yu, J. Z., and B. H. Chen. 2001. Effect of concealment and rearing density on the development and survival of Lemnia biplagiata (Coleoptera: Coccinellidae). J. Agric. Res. China 50: 68–74.
Yu, J. Z., B. H. Chen, and Y. C. Liu. 1997. Resistance of three muskmelon cultivars to Aphis gossypii Glover (Homoptera: Aphididae). Chin. J. Entomol. 17: 245–256.
Zhu, J., and K. C. Park. 2005. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J. Chem. Ecol. 31: 1733–1746.