|
[1] P. L. Nunez and R. Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG, 2nd ed. Oxford, U.K.: Oxford Univ. Press, 2005. [2] P. L. Nunez and R. Srinivasan. (2007). Electoencephalogram. Scholarpedia. DOI: 10.4249/scholarpedia.1348. [3] Nunez PL (2002) EEG. In VS Ramachandran (Ed) Encyclopedia of the Human Brain, La Jolla: Academic Press, 169-179 [4] Kellaway P “ An orderly approach to visual analysis: the parameters of the normal EEG in adults and children. In: Klass DW, Daly DD, editor. Current practice of clinical electroencephalography.” New York: Raven Press, p 69–147. [5] Rankine, L.; Stevenson, N.; Mesbah, M.; Boashash, B., “A Nonstationary Model of Newborn EEG,” Biomedical Engineering, IEEE Transactions on , vol.54, no.1, pp.19-28, Jan. 2007. [6] Meghdad Ashtiyani, Saeed Asadi ,Parmida Moradi Birgani“ICA-Based EEG Classification Using Fuzzy C-mean Algorithm” [7] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control,” Clinical Neurophysiol., vol. 113, no. 6, pp. 767–791, Jun. 2002. [8] E. E. Sutter, “The brain response interface: Communication through visually-induced electrical brain response,” J. Microcomput. Appl., vol. 15, pp. 31–45, 1992. [9] R. Vigario, “Extraction of ocular artifacts from EEG using independent component analysis,” Electroencephalogr. Clin. Neurophysiol., vol. 103, pp. 395–404, 1997. [10] R. Vigario, J. Sarela, V. Jousmaki, M. Hamalainen, and E. Oja, “Independent component approach to the analysis of EEG and MEG recordings,” IEEE Trans. Biomed. Eng., vol. 47, no. 5, pp. 589–593, May 2000. [11] Hosna Ghandeharion, Abbas Erfanian∗ “A fully automatic ocular artifact suppression from EEG data using higher order statistics: Improved performance by wavelet analysis” Medical Engineering &; Physics 32 (2010) 720–729. [12] Muhammad Tahir Akhtar,Christopher J. James” Focal Artifact Removal from Ongoing EEG – A Hybrid Approach Based on Spatially-Constrained ICA and Wavelet De-noising” 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, September 2-6, 2009. [13] H. Du, H. Qi, and X. Wang, “Comparative study of VLSI solutions to independent component analysis,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 548–558, Feb. 2007. [14] K. S. Cho and S. Y. Lee, “Implementation of InfoMax ICA algorithm with analog CMOS circuits,” in Proc. Int. Workshop Independent Compon. Anal. Blind Signal Separat., Vancouver, BC, Canada, Dec. 2001, pp. 70–73. [15] M. H. Cohen and A. G. Andreou, “Analog CMOS integration and experimentation with an auto adaptive independent component analyzer,”IEEE Trans. Circuits Syst. II-Anal. Digital Signal Process. , vol. 42, no. 2, pp. 65–77, Feb. 1995. [16] A. Celik, M. Stanacevic, and G. Cauwenberghs, “Mixed-signal real-time adaptive blind source separation,” in Proc. IEEE Int. Symp. Circuits Syst., Vancouver, BC, Canada, May 2004, pp. 760–763. [17] C. M. Kim, H. M. Park, T. Kim, Y. K. Choi, and S. Y. Lee,“FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling,” IEEE Trans. Neural Netw., vol. 14, no. 5,pp. 1038–1046, Sep. 2003. [18] H. Du and H. Qi, “A reconfigurable FPGA system for parallel independent component analysis,” EURASIP J. Embedded Syst., vol. 2006, no. 23025, pp. 1–12, 2006. [19] H. Du, H. Qi, and G. D. Peterson, “Parallel ICA and its hardware implementation in hyperspectral image analysis,” Proc. SPIE, vol. 5439, pp. 74–83, Apr. 2004. [20] C. Charoensak and F. Sattar, “A single-chip FPGA design for real-time ICA-based blind source separation algorithm,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 6. May 2005, pp. 5822–5825. [21] K. K. Shyu, M. H. Lee, Y. T. Wu, and P. L. Lee, “Implementation of pipelined fastICA on FPGA for real-time blind source separation,” IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 958–970, Jun. 2008. [22] W. C. Huang, S. H. Hung, J. F. Chung, M. H. Chang, L. D. Van, and C. T. Lin, “FPGA implementation of 4-channel ICA for on-line EEG signal separation,” in Proc. IEEE BioCAS, Nov. 2008, pp. 65–68. [23] Chiu-Kuo Chen, Ericson Chua, Chih-Chung Fu, Shao-Yen Tseng, and Wai-Chi Fang, “ A Hardware-Efficient VLSI Implementation of a 4-Channel ICA Processor for Biomedical Signal Measurement,” in Proc. IEEE Int. Conf. on Consumer Electronics, Jan. 2011, pp. 607 – 608. [24] Lan-Da Van, Di-You Wu, and Chien-Shiun Chen, “Energy-Efficient FastICA Implementation for Biomedical Signal Separation,” IEEE Trans. Neural Networks, vol.22, no.11, pp.1809-1822, Nov. 2011. [25] Akhtar, M.T.; Tzyy-Ping Jung; Makeig, S.; Cauwenberghs, G.; “Recursive independent component analysis for online blind source separation,” Circuits and Systems (ISCAS), 2012 IEEE International Symposium on , vol., no., pp.2813-2816, 20-23 May 2012. [26] Kenneth Revett; Sergio Tenreiro de Magalhães, “Cognitive Biometrics: Challenges for the Future,” Communications in Computer and Information Science, 2010, Volume 92, 79-86. [27] Kuo-Kai Shyu; Po-Lei Lee; Ming-Huan Lee; Ming-Hong Lin; Ren-Jie Lai; Yun-Jen Chiu, "Development of a Low-Cost FPGA-Based SSVEP BCI Multimedia Control System," Biomedical Circuits and Systems, IEEE Transactions on , vol.4, no.2, pp.125,132, April 2010. [28] C. Jutten and J. Herault, “Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture,” Signal Processing, vol. 24 no. 1, pp 1–10, 1991. [29] S. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol. 10, no. 2, pp. 251–276, 1998. [30] A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, pp. 1129–1159, 1995. [31] T. Lee, M. Girolami, and T. J. Sejnowski, “Independent component analysis using an extended Infomax algorithm for Mixed subgaussian and supergaussian sources,” Neural Computation, vol. 11, pp. 417–441, 1997. [32] J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE Proc. F, vol. 140, no. 6, pp. 362–370, Dec., 1993. [33] A. Hyv¨arinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,”Neural Computation, vol. 9, no. 7, pp. 1483–1492, 1997. [34] A. Cichocki, R. Unbehauen, and E. Rummert, “Robust learning algorithm for blind separation of signals,” Electronics Letters, vol. 30, no. 17, pp. 1386–1387, 1994. [35] Liao, Jui-Chieh; Shih, Wei-Yeh; Huang, Kuan-Ju; Fang, Wai-Chi, "An online recursive ICA based real-time multichannel EEG system on chip design with automatic eye blink artifact rejection," VLSI Design, Automation, and Test (VLSI-DAT), 2013 International Symposium on , vol., no., pp.1,4, 22-24 April 2013. [36] Shih, Wei-Yeh; Huang, Kuan-Ju; Chen, Chiu-Kuo; Fang, Wai-Chi; Cauwenberghs, Gert; Jung, Tzyy-Ping; , "An effective chip implementation of a real-time eight-channel EEG signal processor based on on-line recursive ICA algorithm," Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE , vol., no., pp.192-195, 28-30 Nov. 2012. [37] Wei-Yeh Shih; Jui-Chieh Liao; Kuan-Ju Huang; Wai-Chi Fang; Gert Cauwenberghs; Tzyy-Ping Jung; ,“An Efficient VLSI Implementation of On-line Recursive ICA Processor for Real-time Multi-channel EEG Signal Separation ,” in Proc. IEEE Engineering in Medicine and Biology Conference , 2013 IEEE , Aug. 2013 [38] Kuan-Ju Huang; Wei-Yeh Shih; Jui-Chieh Liao; Wai-Chi Fang; , " A VLSI design of singular value decomposition processor used in real-time ICA computation for multi-channel EEG system ," Circuits and Systems (ISCAS), 2013 IEEE International Symposium on , May. 2013(accepted). [39] Jui-Chieh Liao; Wai-Chi Fang, "An ICA-based automatic eye blink artifact eliminator for real-time multi-channel EEG applications," Consumer Electronics (ICCE), 2013 IEEE International Conference on , vol., no., pp.532,535, 11-14 Jan. 2013 [40] Hong Bo, Tang Qingyu, Yang Fusheng “ICA IN THE SINGLE-TRIAL ESTIMATION AND ANALYSIS OF VEP” Department of Electrical Engineering, Tsinghua University, Beijing 100084 [41] Jun Ma; Parhi, K.K.; Deprettere, E.F.; "An algorithm transformation approach to CORDIC based parallel singular value decompositions architectures," Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference on , vol.2, no., pp.1401-1405 vol.2, 24-27 Oct. 1999. [42] Shmoo Plot – From Wikipedia URL: http://en.wikipedia.org/wiki/Shmoo_plot [43] EEGLAB - Open Source MATLAB Toolbox for Electrophysiological Research URL: http://sccn.ucsd.edu/eeglab/
|