|
1. Joerger, A. C., and Fersht, A. R. (2016) The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annual review of biochemistry 85, 375-404 2. Basu, S., and Murphy, M. E. (2016) Genetic Modifiers of the p53 Pathway. Cold Spring Harbor perspectives in medicine 6 3. Feng, Z., and Levine, A. J. (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends in cell biology 20, 427-434 4. Vousden, K. H., and Prives, C. (2009) Blinded by the Light: The Growing Complexity of p53. Cell 137, 413-431 5. Leslie, P. L., and Zhang, Y. (2016) MDM2 oligomers: antagonizers of the guardian of the genome. Oncogene, 1-9 6. Moll, U. M., and Petrenko, O. (2003) The MDM2-p53 interaction. Molecular cancer research : MCR 1, 1001-1008 7. Joerger, A. C., and Fersht, A. R. (2008) Structural biology of the tumor suppressor p53. Annual review of biochemistry 77, 557-582 8. Hsu, T. H., Chu, C. C., Jiang, S. Y., Hung, M. W., Ni, W. C., Lin, H. E., and Chang, T. C. (2012) Expression of the class II tumor suppressor gene RIG1 is directly regulated by p53 tumor suppressor in cancer cell lines. FEBS letters 586, 1287-1293 9. Leroy, B., Anderson, M., and Soussi, T. (2014) TP53 mutations in human cancer: database reassessment and prospects for the next decade. Human mutation 35, 672-688 10. Kraiss, S., Spiess, S., Reihsaus, E., and Montenarh, M. (1991) Correlation of metabolic stability and altered quaternary structure of oncoprotein p53 with cell transformation. Experimental cell research 192, 157-164 11. Wade, M., Li, Y. C., and Wahl, G. M. (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nature reviews. Cancer 13, 83-96 12. Harrigan, G. G., Maguire, G., and Boros, L. (2008) Metabolomics in alcohol research and drug development. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism 31, 26-35 13. Rui, L. (2014) Energy metabolism in the liver. Comprehensive Physiology 4, 177-197 14. Bollen, M., Keppens, S., and Stalmans, W. (1998) Specific features of glycogen metabolism in the liver. The Biochemical journal 336 ( Pt 1), 19-31 15. Liang, Y., Liu, J., and Feng, Z. (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell & bioscience 3, 9 16. Zhang, X. D., Qin, Z. H., and Wang, J. (2010) The role of p53 in cell metabolism. Acta pharmacologica Sinica 31, 1208-1212 17. Liberti, M. V., and Locasale, J. W. (2016) The Warburg Effect: How Does it Benefit Cancer Cells? Trends in biochemical sciences 41, 211-218 18. Zhao, F. Q., and Keating, A. F. (2007) Functional properties and genomics of glucose transporters. Current genomics 8, 113-128 19. Wood, I. S., and Trayhurn, P. (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. The British journal of nutrition 89, 3-9 20. Scheepers, A., Joost, H. G., and Schurmann, A. (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN. Journal of parenteral and enteral nutrition 28, 364-371 21. Mueckler, M., and Thorens, B. (2013) The SLC2 (GLUT) family of membrane transporters. Molecular aspects of medicine 34, 121-138 22. Joost, H. G., and Thorens, B. (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Molecular membrane biology 18, 247-256 23. Bryant, N. J., Govers, R., and James, D. E. (2002) Regulated transport of the glucose transporter GLUT4. Nature reviews. Molecular cell biology 3, 267-277 24. Shepherd, P. R., and Kahn, B. B. (1999) Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. The New England journal of medicine 341, 248-257 25. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F. (1985) Sequence and structure of a human glucose transporter. Science (New York, N.Y.) 229, 941-945 26. Fukumoto, H., Seino, S., Imura, H., Seino, Y., Eddy, R. L., Fukushima, Y., Byers, M. G., Shows, T. B., and Bell, G. I. (1988) Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proceedings of the National Academy of Sciences of the United States of America 85, 5434-5438 27. Kayano, T., Fukumoto, H., Eddy, R. L., Fan, Y. S., Byers, M. G., Shows, T. B., and Bell, G. I. (1988) Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. The Journal of biological chemistry 263, 15245-15248 28. Gonzalez, E., and McGraw, T. E. (2006) Insulin signaling diverges into Akt-dependent and -independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane. Molecular biology of the cell 17, 4484-4493 29. Kayano, T., Burant, C. F., Fukumoto, H., Gould, G. W., Fan, Y. S., Eddy, R. L., Byers, M. G., Shows, T. B., Seino, S., and Bell, G. I. (1990) Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). The Journal of biological chemistry 265, 13276-13282 30. Doege, H., Bocianski, A., Joost, H. G., and Schurmann, A. (2000) Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. The Biochemical journal 350 Pt 3, 771-776 31. Li, Q., Manolescu, A., Ritzel, M., Yao, S., Slugoski, M., Young, J. D., Chen, X. Z., and Cheeseman, C. I. (2004) Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. American journal of physiology. Gastrointestinal and liver physiology 287, G236-242 32. Ibberson, M., Uldry, M., and Thorens, B. (2000) GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. The Journal of biological chemistry 275, 4607-4612 33. Augustin, R., Carayannopoulos, M. O., Dowd, L. O., Phay, J. E., Moley, J. F., and Moley, K. H. (2004) Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. The Journal of biological chemistry 279, 16229-16236 34. Dawson, P. A., Mychaleckyj, J. C., Fossey, S. C., Mihic, S. J., Craddock, A. L., and Bowden, D. W. (2001) Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Molecular genetics and metabolism 74, 186-199 35. McVie-Wylie, A. J., Lamson, D. R., and Chen, Y. T. (2001) Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics 72, 113-117 36. Bento, J. L., Bowden, D. W., Mychaleckyj, J. C., Hirakawa, S., Rich, S. S., Freedman, B. I., and Segade, F. (2005) Genetic analysis of the GLUT10 glucose transporter (SLC2A10) polymorphisms in Caucasian American type 2 diabetes. BMC medical genetics 6, 42 37. Scheepers, A., Schmidt, S., Manolescu, A., Cheeseman, C. I., Bell, A., Zahn, C., Joost, H. G., and Schurmann, A. (2005) Characterization of the human SLC2A11 (GLUT11) gene: alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Molecular membrane biology 22, 339-351 38. Doege, H., Bocianski, A., Scheepers, A., Axer, H., Eckel, J., Joost, H. G., and Schurmann, A. (2001) Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. The Biochemical journal 359, 443-449 39. Rogers, S., Macheda, M. L., Docherty, S. E., Carty, M. D., Henderson, M. A., Soeller, W. C., Gibbs, E. M., James, D. E., and Best, J. D. (2002) Identification of a novel glucose transporter-like protein-GLUT-12. American journal of physiology. Endocrinology and metabolism 282, E733-738 40. Rogers, S., Docherty, S. E., Slavin, J. L., Henderson, M. A., and Best, J. D. (2003) Differential expression of GLUT12 in breast cancer and normal breast tissue. Cancer letters 193, 225-233 41. Wright, E. M., and Turk, E. (2004) The sodium/glucose cotransport family SLC5. Pflugers Archiv : European journal of physiology 447, 510-518 42. Wright, E. M., Loo, D. D., Panayotova-Heiermann, M., Lostao, M. P., Hirayama, B. H., Mackenzie, B., Boorer, K., and Zampighi, G. (1994) 'Active' sugar transport in eukaryotes. The Journal of experimental biology 196, 197-212 43. Wright, E. M., Loo, D. D., and Hirayama, B. A. (2011) Biology of human sodium glucose transporters. Physiological reviews 91, 733-794 44. Zhou, L., Cryan, E. V., D'Andrea, M. R., Belkowski, S., Conway, B. R., and Demarest, K. T. (2003) Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). Journal of cellular biochemistry 90, 339-346 45. Kong, C. T., Yet, S. F., and Lever, J. E. (1993) Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters. The Journal of biological chemistry 268, 1509-1512 46. Balamurugan, K., Ortiz, A., and Said, H. M. (2003) Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT system. American journal of physiology. Gastrointestinal and liver physiology 285, G73-77 47. Berry, G. T., Mallee, J. J., Kwon, H. M., Rim, J. S., Mulla, W. R., Muenke, M., and Spinner, N. B. (1995) The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics 25, 507-513 48. Smanik, P. A., Liu, Q., Furminger, T. L., Ryu, K., Xing, S., Mazzaferri, E. L., and Jhiang, S. M. (1996) Cloning of the human sodium lodide symporter. Biochemical and biophysical research communications 226, 339-345 49. Wang, C. W., Huang, Y. C., Chan, F. N., Su, S. C., Kuo, Y. H., Huang, S. F., Hung, M. W., Lin, H. C., Chang, W. L., and Chang, T. C. (2015) A gut microbial metabolite of ginsenosides, compound K, induces intestinal glucose absorption and Na(+) /glucose cotransporter 1 gene expression through activation of cAMP response element binding protein. Molecular nutrition & food research 59, 670-684 50.Huang, Y. C., Chang, W. L., Huang, S. F., Lin, C. Y., Lin, H. C., and Chang, T. C. (2010) Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. European journal of pharmacology 648, 39-49 51. Huang, Y. C., Lin, C. Y., Huang, S. F., Lin, H. C., Chang, W. L., and Chang, T. C. (2010) Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. Journal of agricultural and food chemistry 58, 6039-6047 52. Brattain, M. G., Fine, W. D., Khaled, F. M., Thompson, J., and Brattain, D. E. (1981) Heterogeneity of malignant cells from a human colonic carcinoma. Cancer research 41, 1751-1756 53. Nam, S. O., Yotsumoto, F., Miyata, K., Fukagawa, S., Yamada, H., Kuroki, M., and Miyamoto, S. (2015) Warburg effect regulated by amphiregulin in the development of colorectal cancer. Cancer medicine 4, 575-587 54. Zhang, X., Duan, W., Lee, W. P., Zhang, Y., Xiang, F., Liu, Q., Go, V. L., and Xiao, G. G. (2016) Overexpression of p53 Improves Blood Glucose Control in an Insulin Resistant Diabetic Mouse Model. Pancreas 45, 1010-7 55. Liu, J., Zhang, C., Hu, W., and Feng, Z. (2015) Tumor suppressor p53 and its mutants in cancer metabolism. Cancer letters 356, 197-203 56. Harada, N., and Inagaki, N. (2012) Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. Journal of diabetes investigation 3, 352-353 57. Vallon, V. (2011) Molecular determinants of renal glucose reabsorption. Focus on "Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2". American journal of physiology. Cell physiology 300, C6-8 58. Laginha, K. M., Verwoert, S., Charrois, G. J., and Allen, T. M. (2005) Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 6944-6949 59. Kaeser, M. D., Pebernard, S., and Iggo, R. D. (2004) Regulation of p53 stability and function in HCT116 colon cancer cells. The Journal of biological chemistry 279, 7598-7605 60. L'Ecuyer, T., Sanjeev, S., Thomas, R., Novak, R., Das, L., Campbell, W., and Heide, R. V. (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. American journal of physiology. Heart and circulatory physiology 291, H1273-1280 61. Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nature reviews. Cancer 3, 330-338 62. Osaki, M., Tatebe, S., Goto, A., Hayashi, H., Oshimura, M., and Ito, H. (1997) 5-Fluorouracil (5-FU) induced apoptosis in gastric cancer cell lines: role of the p53 gene. Apoptosis : an international journal on programmed cell death 2, 221-226 63. Muller, P. A., Trinidad, A. G., Timpson, P., Morton, J. P., Zanivan, S., van den Berghe, P. V., Nixon, C., Karim, S. A., Caswell, P. T., Noll, J. E., Coffill, C. R., Lane, D. P., Sansom, O. J., Neilsen, P. M., Norman, J. C., and Vousden, K. H. (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32, 1252-1265 64. Murphy, P. J., Galigniana, M. D., Morishima, Y., Harrell, J. M., Kwok, R. P., Ljungman, M., and Pratt, W. B. (2004) Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. The Journal of biological chemistry 279, 30195-30201 65. Kamaraj, B., and Bogaerts, A. (2015) Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study. PloS one 10, e0134638 66. Tan, B. S., Tiong, K. H., Choo, H. L., Chung, F. F., Hii, L. W., Tan, S. H., Yap, I. K., Pani, S., Khor, N. T., Wong, S. F., Rosli, R., Cheong, S. K., and Leong, C. O. (2015) Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell death & disease 6, e1826 67. Peral, M. J., Galvez, M., Soria, M. L., and Ilundain, A. A. (2005) Developmental decrease in rat small intestinal creatine uptake. Mechanisms of ageing and development 126, 523-530 68. Kawauchi, K., Araki, K., Tobiume, K., and Tanaka, N. (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nature cell biology 10, 611-618 69. Vallon, V., Platt, K. A., Cunard, R., Schroth, J., Whaley, J., Thomson, S. C., Koepsell, H., and Rieg, T. (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. Journal of the American Society of Nephrology : JASN 22, 104-112 70. Isaacs, W. B., Carter, B. S., and Ewing, C. M. (1991) Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer research 51, 4716-4720 71. Hu, S., Dong, T. S., Dalal, S. R., Wu, F., Bissonnette, M., Kwon, J. H., and Chang, E. B. (2011) The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PloS one 6, e16221 72. Hwang-Verslues, W. W., and Sladek, F. M. (2008) Nuclear receptor hepatocyte nuclear factor 4alpha1 competes with oncoprotein c-Myc for control of the p21/WAF1 promoter. Molecular endocrinology (Baltimore, Md.) 22, 78-90 73. Balakrishnan, A., Stearns, A. T., Rhoads, D. B., Ashley, S. W., and Tavakkolizadeh, A. (2008) Defining the transcriptional regulation of the intestinal sodium-glucose cotransporter using RNA-interference mediated gene silencing. Surgery 144, 168-173 74. Wang, R., Kobayashi, R., and Bishop, J. M. (1996) Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proceedings of the National Academy of Sciences of the United States of America 93, 8425-8430
|