跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 02:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱先祐
研究生(外文):CHU,HSIEN-YU
論文名稱:腫瘤抑制蛋白p53調節鈉葡萄糖共轉運蛋白基因表現之研究
論文名稱(外文):Study on the regulation of sodium glucose cotransporters gene expression by tumor suppressor p53 in cancer cells
指導教授:張自忠
指導教授(外文):CHANG, TSU-CHUNG
口試委員:周慰遠姜淑媛
口試委員(外文):CHOU,WEI-YUANJIANG,SHU-YUAN
口試日期:2016-05-05
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:95
中文關鍵詞:腫瘤抑制蛋白p53鈉葡萄糖共轉運蛋白
外文關鍵詞:p53SGLT1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
p53在調控人類細胞的生長、分化、代謝及凋亡中扮演著重要的角色。文獻顯示,在腸道上皮細胞中,調節糖轉運蛋白 (Sodium-dependent glucose cotransporter) SGLT1的表達能夠調節葡萄糖的吸收作用。先前的研究指出,p53表達可抑制GLUT1、GLUT2、GLUT3與GLUT4等葡萄糖轉運蛋白之表現量或活性,但是對於SGLT系列糖轉運蛋白之影響則不明瞭。為了瞭解p53在調控人類攝取葡萄糖至體內及其在系統代謝之角色,我們研究p53對SGLT1基因表現之影響與機制。以表達WTp53與SGLT1基因的人類腸道細胞HCT116為研究模式。研究方法:(1)分別利用Doxorubicin與5-Fluorouracil、或以WT/mutant p53表達載體誘導WT或mutant p53的表達、或以Pifithrin α抑制WTp53的活性。(2)使用Western Blot及qPCR分析p53的誘導或抑制下,SGLT1蛋白質與mRNA表現量的變化。(3)分析p53對細胞葡萄糖吸收之影響。(4)使用promoter Luciferase assay分析參與p53 調節SGLT1表現之序列、轉錄因子及機轉。我們發現,不論在蛋白質或mRNA層次,SGLT1的基因表現量會隨著p53蛋白質的誘導而穩定上升;相反地,當p53蛋白質受到抑制時,會弱化下游SGLT1的表現量。顯示p53對SGLT1基因表現之影響與基因轉錄有關,因此 分析SGLT1基因啟序列,以瞭解p53的調控機制。p53對糖吸收之效應也在進行中。本研究顯示p53在SGLT1基因表現扮演著相當重要的角色,並且直接調節細胞的糖吸收與代謝,此研究將延伸我們對p53在生物系統窘迫壓力下對代謝所扮演的角色之瞭解。
The tumor suppressor p53 plays an important role in the regulation of proliferation, apoptosis, and metabolism in human cells. The sodium-dependent glucose cotransporter 1 (SGLT1) play a crucial role in glucose uptake in intestinal and kidney tubular epithelial cells, respectively. Previous studies indicate that p53 protein significantly down-regulates the expression and activity of the facilitate glucose transporter proteins, including GLUT1, GLUT2, GLUT3, and GLUT4. However, the effect and mechanisms of p53 on regulation of SGLTs expression are still not understood. To understand the metabolic role of p53 protein in the active absorption of glucose from exterior environments, the effect of p53 on the function and gene expression of SGLT1 was investigated. In this study, the cultured human intestinal cell HCT116, which are known to express WT-p53 protein were used. To investigate the effect of p53 protein on SGLT1 gene expression, the p53 protein was induced in using doxorubicin, 5-fluorouracil, and the inhibited by pifithrin-α. The wild type (WT) or mutant p53 protein were also overexpressed using WT- or mutant-p53 vectors. In addition, the p53-KO HCT116 cells were also used. Western blot and Q-PCR analysis were used to analyze the induction and inhibition of p53 mRNA and protein levels in these cells. Moreover, the effect of different p53 status on glucose uptake were examined. Transient transfection analysis further used to analyze a series of SGLT1 promoter constructs to investigated the sequence elements and transcription factors that are involved in the p53-mediated effects. Our results showed that the expression of SGLT1 is increased with increasing p53 protein level. In addition, quantitative PCR also revealed a pronounced increase in SGLT1 mRNA levels following p53 induction. Further studies using the luciferase reporters showed that the similar induction of SGLT1 promoter activities by p53 protein. These results suggest that the p53-mediated induction of SGLT1 is regulated primarily at the transcriptional level. Further studies are performed to identify the promoter elements and transcription factors that are involved in p53-mediated induction. In conclusion, we demonstrate that p53 palys a significant role in the expression of SGLT1. Our results also extended the metabolic significance of p53 to whole body glucose homeostasis.


目錄 I
表目錄 V
圖目錄 VI
縮寫表 VIII
中文摘要 X
Abstract XII
第一章 緒言 1
壹、腫瘤抑制蛋白p53 1
一、腫瘤抑制蛋白p53簡介與功能 1
二、突變p53之結構與功能 2
貳、糖代謝作用 3
一、細胞機轉 3
二、糖質新生(Gluconeogenesis) 4
三、肝醣的合成 (Glycogenesis)與分解 (Glycogenlysis) 4
四、p53與糖代謝之關係 5
五、癌細胞與糖代謝之關係 6
參、葡萄糖轉運蛋白 6
一、葡萄糖轉運蛋白家族 (GLUTs) 6
二、鈉依賴型葡萄糖轉運蛋白家族 (SGLTs) 8
肆、實驗使用之各類細胞系 10
一、HCT116 (Human Intestinal Epithelial Cells) 10
二、HT-29 (Human Colorectal Adenocarcinoma Cell Line) 10
伍、研究動機 12
第二章 材料與方法 18
壹、主要儀器及藥品試劑 18
一、儀器及器材 18
二、藥品試劑 19
三、抗體 21
四、細胞來源 21
貳、方法 21
一、HCT116(WT)、HCT116(Mut)、RPTECs細胞培養(Cell culture) 21
二、葡萄糖轉運分析 (Glucose transport assay) 25
三、蛋白質濃度測定(Protein assay) 26
四、西方墨點法(Western blotting) 27
五、萃取細胞RNA(RNA extraction) 34
六、反轉錄聚合酶連鎖反應(RT-PCR) 36
七、定量聚合酶連鎖反應(Q-PCR) 37
八、轉形作用 38
九、小量質體的備製 40
十、大量質體的備製 42
十一、細胞轉染 43
十二、相對螢光酶(Luciferase)活性分析 44
第三章 結果 45
壹、p53的活化與SGLT1訊息路徑影響之分析 45
一、Dox誘導p53的活化與SGLT1蛋白質生合成之連動性分析 45
二、5-Fu誘導p53的活化與SGLT1蛋白質生合成之連動性分析 45
貳、抑制p53的活化對SGLT1訊息路徑影響之分析 46
Dox或5Fu誘導p53後給予抑制對SGLT1蛋白質連動性之分析 46
參、p53的活化與SGLT1 基因表現之連動性分析 47
一、Dox誘導p53的活化與SGLT1 基因表現連動性之分析 47
二、5-Fu誘導p53的活化與SGLT1 基因表現連動性之分析 47
肆、活化不同細胞系的p53對SGLT1訊息路徑影響之分析 48
一、5-Fu誘導各細胞系的p53與SGLT1蛋白合成之連動性分析 48
二、5-Fu誘導各細胞系的p53對SGLT1基因調控之連動性分析 48
伍、不同p53基因型對SGLT1訊息路徑影響之分析 49
轉染WT-p53或Mut-p53基因對SGLT1蛋白質連動性之分析 49
陸、p53的活化對SGLT1轉錄活性影響之分析 50
一、SGLT1上游啟動子的構築 50
二、5-Fu誘導p53的活化對SGLT1 promoter轉錄活性影響之分析 50
柒、p53的活化與人類腸道上皮細胞葡萄糖運輸影響之分析 51
一、Dox藥物誘導內源性p53的活化與糖吸收效率影響之分析 51
二、5-Fu藥物誘導內源性p53的活化與糖吸收效率影響之分析 51
第四章 討論 53
壹、p53的活化與SGLT1訊息路徑影響之分析 53
貳、p53的活化與SGLT1 基因表現之連動性分析 54
參、p53的活化與人類腸道上皮細胞葡萄糖運輸影響之分析 55
第五章 結論 56
第六章 參考文獻 73

1. Joerger, A. C., and Fersht, A. R. (2016) The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annual review of biochemistry 85, 375-404
2. Basu, S., and Murphy, M. E. (2016) Genetic Modifiers of the p53 Pathway. Cold Spring Harbor perspectives in medicine 6
3. Feng, Z., and Levine, A. J. (2010) The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends in cell biology 20, 427-434
4. Vousden, K. H., and Prives, C. (2009) Blinded by the Light: The Growing Complexity of p53. Cell 137, 413-431
5. Leslie, P. L., and Zhang, Y. (2016) MDM2 oligomers: antagonizers of the guardian of the genome. Oncogene, 1-9
6. Moll, U. M., and Petrenko, O. (2003) The MDM2-p53 interaction. Molecular cancer research : MCR 1, 1001-1008
7. Joerger, A. C., and Fersht, A. R. (2008) Structural biology of the tumor suppressor p53. Annual review of biochemistry 77, 557-582
8. Hsu, T. H., Chu, C. C., Jiang, S. Y., Hung, M. W., Ni, W. C., Lin, H. E., and Chang, T. C. (2012) Expression of the class II tumor suppressor gene RIG1 is directly regulated by p53 tumor suppressor in cancer cell lines. FEBS letters 586, 1287-1293
9. Leroy, B., Anderson, M., and Soussi, T. (2014) TP53 mutations in human cancer: database reassessment and prospects for the next decade. Human mutation 35, 672-688
10. Kraiss, S., Spiess, S., Reihsaus, E., and Montenarh, M. (1991) Correlation of metabolic stability and altered quaternary structure of oncoprotein p53 with cell transformation. Experimental cell research 192, 157-164
11. Wade, M., Li, Y. C., and Wahl, G. M. (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nature reviews. Cancer 13, 83-96
12. Harrigan, G. G., Maguire, G., and Boros, L. (2008) Metabolomics in alcohol research and drug development. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism 31, 26-35
13. Rui, L. (2014) Energy metabolism in the liver. Comprehensive Physiology 4, 177-197
14. Bollen, M., Keppens, S., and Stalmans, W. (1998) Specific features of glycogen metabolism in the liver. The Biochemical journal 336 ( Pt 1), 19-31
15. Liang, Y., Liu, J., and Feng, Z. (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell & bioscience 3, 9
16. Zhang, X. D., Qin, Z. H., and Wang, J. (2010) The role of p53 in cell metabolism. Acta pharmacologica Sinica 31, 1208-1212
17. Liberti, M. V., and Locasale, J. W. (2016) The Warburg Effect: How Does it Benefit Cancer Cells? Trends in biochemical sciences 41, 211-218
18. Zhao, F. Q., and Keating, A. F. (2007) Functional properties and genomics of glucose transporters. Current genomics 8, 113-128
19. Wood, I. S., and Trayhurn, P. (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. The British journal of nutrition 89, 3-9
20. Scheepers, A., Joost, H. G., and Schurmann, A. (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN. Journal of parenteral and enteral nutrition 28, 364-371
21. Mueckler, M., and Thorens, B. (2013) The SLC2 (GLUT) family of membrane transporters. Molecular aspects of medicine 34, 121-138
22. Joost, H. G., and Thorens, B. (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Molecular membrane biology 18, 247-256
23. Bryant, N. J., Govers, R., and James, D. E. (2002) Regulated transport of the glucose transporter GLUT4. Nature reviews. Molecular cell biology 3, 267-277
24. Shepherd, P. R., and Kahn, B. B. (1999) Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. The New England journal of medicine 341, 248-257
25. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F. (1985) Sequence and structure of a human glucose transporter. Science (New York, N.Y.) 229, 941-945
26. Fukumoto, H., Seino, S., Imura, H., Seino, Y., Eddy, R. L., Fukushima, Y., Byers, M. G., Shows, T. B., and Bell, G. I. (1988) Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proceedings of the National Academy of Sciences of the United States of America 85, 5434-5438
27. Kayano, T., Fukumoto, H., Eddy, R. L., Fan, Y. S., Byers, M. G., Shows, T. B., and Bell, G. I. (1988) Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. The Journal of biological chemistry 263, 15245-15248
28. Gonzalez, E., and McGraw, T. E. (2006) Insulin signaling diverges into Akt-dependent and -independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane. Molecular biology of the cell 17, 4484-4493
29. Kayano, T., Burant, C. F., Fukumoto, H., Gould, G. W., Fan, Y. S., Eddy, R. L., Byers, M. G., Shows, T. B., Seino, S., and Bell, G. I. (1990) Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). The Journal of biological chemistry 265, 13276-13282
30. Doege, H., Bocianski, A., Joost, H. G., and Schurmann, A. (2000) Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. The Biochemical journal 350 Pt 3, 771-776
31. Li, Q., Manolescu, A., Ritzel, M., Yao, S., Slugoski, M., Young, J. D., Chen, X. Z., and Cheeseman, C. I. (2004) Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. American journal of physiology. Gastrointestinal and liver physiology 287, G236-242
32. Ibberson, M., Uldry, M., and Thorens, B. (2000) GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. The Journal of biological chemistry 275, 4607-4612
33. Augustin, R., Carayannopoulos, M. O., Dowd, L. O., Phay, J. E., Moley, J. F., and Moley, K. H. (2004) Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. The Journal of biological chemistry 279, 16229-16236
34. Dawson, P. A., Mychaleckyj, J. C., Fossey, S. C., Mihic, S. J., Craddock, A. L., and Bowden, D. W. (2001) Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Molecular genetics and metabolism 74, 186-199
35. McVie-Wylie, A. J., Lamson, D. R., and Chen, Y. T. (2001) Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics 72, 113-117
36. Bento, J. L., Bowden, D. W., Mychaleckyj, J. C., Hirakawa, S., Rich, S. S., Freedman, B. I., and Segade, F. (2005) Genetic analysis of the GLUT10 glucose transporter (SLC2A10) polymorphisms in Caucasian American type 2 diabetes. BMC medical genetics 6, 42
37. Scheepers, A., Schmidt, S., Manolescu, A., Cheeseman, C. I., Bell, A., Zahn, C., Joost, H. G., and Schurmann, A. (2005) Characterization of the human SLC2A11 (GLUT11) gene: alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Molecular membrane biology 22, 339-351
38. Doege, H., Bocianski, A., Scheepers, A., Axer, H., Eckel, J., Joost, H. G., and Schurmann, A. (2001) Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. The Biochemical journal 359, 443-449
39. Rogers, S., Macheda, M. L., Docherty, S. E., Carty, M. D., Henderson, M. A., Soeller, W. C., Gibbs, E. M., James, D. E., and Best, J. D. (2002) Identification of a novel glucose transporter-like protein-GLUT-12. American journal of physiology. Endocrinology and metabolism 282, E733-738
40. Rogers, S., Docherty, S. E., Slavin, J. L., Henderson, M. A., and Best, J. D. (2003) Differential expression of GLUT12 in breast cancer and normal breast tissue. Cancer letters 193, 225-233
41. Wright, E. M., and Turk, E. (2004) The sodium/glucose cotransport family SLC5. Pflugers Archiv : European journal of physiology 447, 510-518
42. Wright, E. M., Loo, D. D., Panayotova-Heiermann, M., Lostao, M. P., Hirayama, B. H., Mackenzie, B., Boorer, K., and Zampighi, G. (1994) 'Active' sugar transport in eukaryotes. The Journal of experimental biology 196, 197-212
43. Wright, E. M., Loo, D. D., and Hirayama, B. A. (2011) Biology of human sodium glucose transporters. Physiological reviews 91, 733-794
44. Zhou, L., Cryan, E. V., D'Andrea, M. R., Belkowski, S., Conway, B. R., and Demarest, K. T. (2003) Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). Journal of cellular biochemistry 90, 339-346
45. Kong, C. T., Yet, S. F., and Lever, J. E. (1993) Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters. The Journal of biological chemistry 268, 1509-1512
46. Balamurugan, K., Ortiz, A., and Said, H. M. (2003) Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT system. American journal of physiology. Gastrointestinal and liver physiology 285, G73-77
47. Berry, G. T., Mallee, J. J., Kwon, H. M., Rim, J. S., Mulla, W. R., Muenke, M., and Spinner, N. B. (1995) The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics 25, 507-513
48. Smanik, P. A., Liu, Q., Furminger, T. L., Ryu, K., Xing, S., Mazzaferri, E. L., and Jhiang, S. M. (1996) Cloning of the human sodium lodide symporter. Biochemical and biophysical research communications 226, 339-345
49. Wang, C. W., Huang, Y. C., Chan, F. N., Su, S. C., Kuo, Y. H., Huang, S. F., Hung, M. W., Lin, H. C., Chang, W. L., and Chang, T. C. (2015) A gut microbial metabolite of ginsenosides, compound K, induces intestinal glucose absorption and Na(+) /glucose cotransporter 1 gene expression through activation of cAMP response element binding protein. Molecular nutrition & food research 59, 670-684
50.Huang, Y. C., Chang, W. L., Huang, S. F., Lin, C. Y., Lin, H. C., and Chang, T. C. (2010) Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. European journal of pharmacology 648, 39-49
51. Huang, Y. C., Lin, C. Y., Huang, S. F., Lin, H. C., Chang, W. L., and Chang, T. C. (2010) Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. Journal of agricultural and food chemistry 58, 6039-6047
52. Brattain, M. G., Fine, W. D., Khaled, F. M., Thompson, J., and Brattain, D. E. (1981) Heterogeneity of malignant cells from a human colonic carcinoma. Cancer research 41, 1751-1756
53. Nam, S. O., Yotsumoto, F., Miyata, K., Fukagawa, S., Yamada, H., Kuroki, M., and Miyamoto, S. (2015) Warburg effect regulated by amphiregulin in the development of colorectal cancer. Cancer medicine 4, 575-587
54. Zhang, X., Duan, W., Lee, W. P., Zhang, Y., Xiang, F., Liu, Q., Go, V. L., and Xiao, G. G. (2016) Overexpression of p53 Improves Blood Glucose Control in an Insulin Resistant Diabetic Mouse Model. Pancreas 45, 1010-7
55. Liu, J., Zhang, C., Hu, W., and Feng, Z. (2015) Tumor suppressor p53 and its mutants in cancer metabolism. Cancer letters 356, 197-203
56. Harada, N., and Inagaki, N. (2012) Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. Journal of diabetes investigation 3, 352-353
57. Vallon, V. (2011) Molecular determinants of renal glucose reabsorption. Focus on "Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2". American journal of physiology. Cell physiology 300, C6-8
58. Laginha, K. M., Verwoert, S., Charrois, G. J., and Allen, T. M. (2005) Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 6944-6949
59. Kaeser, M. D., Pebernard, S., and Iggo, R. D. (2004) Regulation of p53 stability and function in HCT116 colon cancer cells. The Journal of biological chemistry 279, 7598-7605
60. L'Ecuyer, T., Sanjeev, S., Thomas, R., Novak, R., Das, L., Campbell, W., and Heide, R. V. (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. American journal of physiology. Heart and circulatory physiology 291, H1273-1280
61. Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nature reviews. Cancer 3, 330-338
62. Osaki, M., Tatebe, S., Goto, A., Hayashi, H., Oshimura, M., and Ito, H. (1997) 5-Fluorouracil (5-FU) induced apoptosis in gastric cancer cell lines: role of the p53 gene. Apoptosis : an international journal on programmed cell death 2, 221-226
63. Muller, P. A., Trinidad, A. G., Timpson, P., Morton, J. P., Zanivan, S., van den Berghe, P. V., Nixon, C., Karim, S. A., Caswell, P. T., Noll, J. E., Coffill, C. R., Lane, D. P., Sansom, O. J., Neilsen, P. M., Norman, J. C., and Vousden, K. H. (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32, 1252-1265
64. Murphy, P. J., Galigniana, M. D., Morishima, Y., Harrell, J. M., Kwok, R. P., Ljungman, M., and Pratt, W. B. (2004) Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. The Journal of biological chemistry 279, 30195-30201
65. Kamaraj, B., and Bogaerts, A. (2015) Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study. PloS one 10, e0134638
66. Tan, B. S., Tiong, K. H., Choo, H. L., Chung, F. F., Hii, L. W., Tan, S. H., Yap, I. K., Pani, S., Khor, N. T., Wong, S. F., Rosli, R., Cheong, S. K., and Leong, C. O. (2015) Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell death & disease 6, e1826
67. Peral, M. J., Galvez, M., Soria, M. L., and Ilundain, A. A. (2005) Developmental decrease in rat small intestinal creatine uptake. Mechanisms of ageing and development 126, 523-530
68. Kawauchi, K., Araki, K., Tobiume, K., and Tanaka, N. (2008) p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nature cell biology 10, 611-618
69. Vallon, V., Platt, K. A., Cunard, R., Schroth, J., Whaley, J., Thomson, S. C., Koepsell, H., and Rieg, T. (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. Journal of the American Society of Nephrology : JASN 22, 104-112
70. Isaacs, W. B., Carter, B. S., and Ewing, C. M. (1991) Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer research 51, 4716-4720
71. Hu, S., Dong, T. S., Dalal, S. R., Wu, F., Bissonnette, M., Kwon, J. H., and Chang, E. B. (2011) The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PloS one 6, e16221
72. Hwang-Verslues, W. W., and Sladek, F. M. (2008) Nuclear receptor hepatocyte nuclear factor 4alpha1 competes with oncoprotein c-Myc for control of the p21/WAF1 promoter. Molecular endocrinology (Baltimore, Md.) 22, 78-90
73. Balakrishnan, A., Stearns, A. T., Rhoads, D. B., Ashley, S. W., and Tavakkolizadeh, A. (2008) Defining the transcriptional regulation of the intestinal sodium-glucose cotransporter using RNA-interference mediated gene silencing. Surgery 144, 168-173
74. Wang, R., Kobayashi, R., and Bishop, J. M. (1996) Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proceedings of the National Academy of Sciences of the United States of America 93, 8425-8430

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top