跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳悅
研究生(外文):Chen, Yueh
論文名稱:正常台灣族群心率變異性之性別與姿勢差異
論文名稱(外文):Gender and posture dependent changes of heart rate variability in an apparently healthy Taiwanese population
指導教授:楊騰芳楊騰芳引用關係
指導教授(外文):Yang, Ten-Fang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:90
中文關鍵詞:心率變異性性別差異姿勢差異時域分析頻域分析
外文關鍵詞:Heart rate variabilityGender dependentPosture dependentTime domainFrequency domain
相關次數:
  • 被引用被引用:24
  • 點閱點閱:1796
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:1
心率變異性(heart rate variability, HRV)分析是一種測量連續心跳中,心搏與心博之間變化程度的方法。事實上,正常的心跳會因為受到自主神經系統的調控,而產生波動,這種波動會因自主神經失調受到影響而消失。因此,當變異消失或明顯降低時,會產生沒有波動而完全規律的心率,這種心率被認為是心臟自主神經調節系統異常的表現。HRV目的在於測量心率快慢差異的規律,且可提供非侵襲性的方式來測量自主神經系統的平衡性。會造成其改變的因素有很多,除了年紀和性別,族群外,還會因為其他病理因素,如心肌梗塞, 糖尿病,心臟衰竭等等而造成HRV的下降。使用HRV來評估心血管或精神病患之自主神經狀況非常符合經濟效應,也比其他侵入性的檢查安全,減少了許多不必要的危險性。為了提供臨床上更確切的數據,判斷該病患的HRV是由於年紀增長或男女差異所造成之自然下降抑或是因為病變的產生,需要建立正常數據的範圍。本研究之目的在於建立屬於台灣人正常族群的資料庫,並以性別分類,研究性別差異是否顯著,同時建立其正常範圍。同時亦增加姿勢差異的比較,研究不同姿勢時,心率變異性的改變以及其趨勢。
由年滿二十歲以上的大學學生志願參加本實驗。參與實驗之總人數包含115名,年紀範圍為20-30歲。男性占57名,平均年齡為24 ± 1歲,女性占58名,平均年齡為23 ± 5歲。本實驗所使用的機器為台灣達楷生醫科技所研發的DailyCare BioMedical’s ReadMyHeartR。實驗過程中,所有受測者需變化三種不同的姿勢測量HRV,分別為仰臥,坐姿,以及站姿,各測量五分鐘,其間並休息五分鐘。
本研究之結果顯示,使用短程HRV測量時,性別與姿勢都對頻域分析有很大的影響。在仰臥時,HF的數值最大,代表著此時副交感神經的高活性。而站立時,LF,與LF/HF的數值最大,代表著此時交感神經有最高活性,且在此時交感神經活性大於副交感神經。由以上結果,本研究可歸納以下幾點結論:
1. 心率變異性之頻域分析中之LF及LF/HF呈現男高女低的顯著差異。男性在不同的姿勢中,都較女性高。這應該是因為男性之交感神經活性優於女性。
2. 心率變異性之頻域分析中之HF呈現男低女高的顯著差異。女性之HF在不同的姿勢中,都比男性高,推論其可能原因為女性受到賀爾蒙的影響使得迷走神經活性較高。
3. 心率總變異性在時域與頻域分析皆以仰臥時最大,站立時最小,且有統計上的顯著差異。
4. HF在躺著的時候最大,而站立時有最大的LF與LF/HF。因為在仰臥時,副交感神經活性最大而站立時交感神經活性增強之故。
5. HF高時心率變異性大;而LF與LF/HF高時,心率變異性則會降低。
Heart rate variability (HRV) analysis has been used for many years to measure ANS activities for its simplicity, accuracy, and noninvasiveness. Recent studies show that HRV may be a powerful technique to measure the modulation and balance between parasympathetic nervous system (PNS) and sympathetic nervous system (SNS) by time and frequency domain analysis. It’s believed that decreased HRV is a sign of autonomic nerve system(ANS) imbalance, which may be caused by diseases, and with aging, the HRV decreases. Gender specific normal limits of HRV should be established to distinguish the normal decrease of HRV from pathological decreases in diseased conditions. The aim of the present study is to establish the gender dependent HRV normal limits in a healthy Taiwanese student population. Otherwise, posture differences of short term (5 minutes) time domain and frequency domain HRV parameters were analyzed to distinguish the different postures effect the ANS.
This study was performed at College of Biological Science and Technology, National Chao Tung University. A total of 115 healthy students from the university (57 males, aged 24 ± 1 years, and 58 females, aged 23 ± 5 years) without evidence of any heart disease by history and routine medical checkup were recruited for this study. The short term HRV recording was derived from the Modified Lead II-ECG, by a locally developed and manufactured device, DailyCare BioMedical’s ReadMyHeartR. All subjects were asked for lying, sitting, and standing each for 5-minute recording, and all of them must rest for at least 5 minutes before the measurement.
The statistically significant results differences from lying to sitting, lying to standing, and sitting to standing and the difference between genders on different postures were demonstrated. SDNN and RMSSD also decreased from lying to standing(P≦0.01, table 1), except lying to sitting of SDNN(P>0.05). Total power, representing the autonomic tone, also declined from lying to standing (P ≦0.01, table 2 and 3), except lying to sitting. Both the HF and HF norm decreased from lying to standing (P ≦ 0.05). The LF norm and LF/HF ratio increased from lying to standing (P≦ 0.01).
From the results, we concluded that:
1. There was a statistically significant sex difference in frequency domain HRV parameters in all postures. The LF and LF/HF of male is greater than female in all postures. This might imply that sympathetic tone of male is higher than that of female.
2. The high HF of female is greater than male in all postures. This might imply that parasympathetic tone of female is higher than that of male.
3. There was a statistically significant posture difference in both time and frequency domain HRV parameters. The HRV of lying is greatest, and the HRV of standing is smallest.
4. HF component is the largest while lying, and LF and LF/HF are the largest while standing. This means that highest activity of parasympathetic tone while lying, and highest activity of sympathetic tone while standing.
5. While HF component is larger, HRV become larger. And while LF component and LF/HF are larger, HRV become smaller.
中文摘要 i
英文摘要 iii
致謝 vi
目錄 vii
表目錄 ix
圖目錄 x

一、 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.2.1 性別差異 4
1.2.2 姿勢差異 4
1.3 論文架構 5
二、 Electrocardiology 6
2.1 Electrocardiology的簡介 6
2.2 心電圖的歷史 6
2.2.1 電的時代(Era of Electricity) 7
2.2.2 生物電氣時代(Era of Bioelectricity) 7
2.2.3 心電圖時代(Era of Cardiac Electric Sequence) 11
2.3 心臟的基本功能 16
2.4 心臟的傳到系統 17
2.5 心電圖波形的定義 19
三、 心率變異性(Heart rate variality, HRV)分析 22
3.1 心率變異性簡介 22
3.2 HRV之發展與歷史 23
3.3 HRV之背景知識與生理基礎 25
3.3.1 神經系統 25
3.3.2 心跳速率與自主神經的關係 26
四、 HRV分析方法 28
4.1 時域分析法(Time domain methods) 28
4.1.1 Statistical methods 30
4.1.2 Geometrical methods 30
4.2 頻域分析法(Frequency domain methods) 34
4.3 長程紀錄與短程紀錄 36
五、 實驗對象與實驗方法 37
5.1 實驗對象 37
5.2 實驗機器 38
5.3 實驗過程 39
5.4 HRV分析 42
5.4.1 時域分析 42
5.4.2 頻域分析 42
5.4.3 資料分析 42
六、 實驗結果分析與討論 44
6.1 性別差異 47
6.2 姿勢差異 58
6.3 結果討論 67
七、 結論及未來展望 70
7.1 結論 70
7.2 研究限制與未來展望 71
參考文獻 73
附錄一 81
附錄二 82
附錄三 85

1. Huikuri HV, et al., “Sex-related differences in autonomic modulation of heart rate in middle-aged subjects”, Circulation, 94, pp. 122 – 125, July 1996.
2. Silvetti MS, et al., “Heart rate variability in healthy children and adolescents is partially related to age and gender”, International Journal of Cardiology, 81, pp. 169 – 174, December 2001.
3. John ZH, “Effect of age and sex on heart rate variability in healthy subjects”, Journal of Manipulative and Physiological Therapeutics, 5,
pp. 374 - 379, June 2007.
4. Barantke M, et al., “Effects of gender and aging on differential autonomic responses to orthostatic maneuvers”, Journal of Cardiovascular Electrophysiology, 19, pp. 1296 – 1303, December 2008.
5. Choi JB, et al., “Age and Ethnicity Differences in Short-Term Heart-Rate Variability”, Psychosomatic Medicine, 68, pp. 421 – 426, May 2006.
6. Sloan RP, et al., “Cardiac autonomic control and the effects of age, race, and sex”, Autonomic Neuroscience, 139, pp. 78 – 85, May 2008.
7. Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology, “Heart rate variability: standards of measurement, physiological interpretation and clinical use”, European Heart Journal, 17, pp.354 – 381, March 1996.
8. Bigger JT, et al., “RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction”, Circulation, 91, pp. 1936 – 1943, 1995.
9. Lombardi F, et al., “Heart rate variability as an index of sympathovagal interaction after myocardial infarction”, The American journal of cardiology, 60, pp. 1239-1245, December 1987.
10. Lombardi F, et al., “Circadian variation of spectral indices of heart rate variability after myocardial infarction”, The American journal of cardiology, 123, pp. 1521 – 1529, June 1992.
11. Kitney RI, et al., “Heart rate variability in the assessment of autonomic diabetic neuropathy”, Automedicau, 4, pp. 155 – 167, 1982.
12. Pagani M, et al., “Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy”, Journal of the autonomic nervous system, 23, pp. 143 – 153, August 1988.
13. Freeman R, et al., “Spectral analysis of heart rate in diabetic neuropathy”, Archives of neurology, 48, pp. 185 – 190, 1991.
14. Bernardi L, et al., “Impaired circulation modulation of sympathovagal modulation of sympathovagal activity in diabetes”, Circulation, 86, pp. 1443 – 1452. November 1992.
15. Bemardi L, et al., “Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise”, Cardiovascular research, 24, pp. 969 – 981, December 1990.
16. Kenneth EF, et al., “Power spectrum analysis of heart rate variability in human cardiac transplant recipients”, Circulation, 79, pp. 76 – 82, January 1989.
17. Fallen EL, et al., “Spectral analysis of heart rate variability following human heart transplantation: evidence for functional reinnervation”, Journal of the autonomic nervous system, 23, pp. 199 – 206, September 1988.
18. Casolo G, et al., “Decreased spontaneous heart rate variability on congestive heart failure”, The American journal of cardiology, 64, pp. 1162 – 1167, November 1989.
19. J Nolan, et al., “Decreased cardiac parasympathetic activity in chronic heart failure and its relation to left ventricular function”, British heart journal, 69, pp. 761 – 767, June 1992.
20. Kienzle MG, et al., “Clinical hemodynamic and sympathetic neural correlates of heart rate variability in congestive heart failure”, The American journal of cardiology, 69, pp. 761 – 767, March 1992.
21. Mortara A, et al., “Can power spectral analysis of heart rate variability identify a high risk subgroup of congestive heart failure patients with excessive sympathetic activation? A pilot study before and after heart transplantation”, British heart journal, 71, pp. 422 – 430, May 1994.
22. Gordon D, et al. “Heart rate spectral analysis: a noninvasive probe of cardiovascular regulation in critically ill children with heart disease”, Pediatric cardiology, 9, pp. 69 – 77, 1988.
23. Ing-Fang Yang, L-wen Tsai, Ten-Fang Yang. “Comparison Between Angiotentensin Converting Enzyme Inhibitor and Angiotentensin Recptor Blocker on Cardiovascular Tolerance After Hemodialysis: Heart Rate Variability and QT Interval Analysis”, 35th Annual Conference of International Congress on Electrocardiology, St. Petersburg, Russia, September 2008.
24. Ing-Fang Yang, Ten-Fang Yang. “Use of short-term Heart Interval variability in Evaluation of angiotensin receptor blocker on cardiac autonomic modulation post hemodialysis”, 17th Asian Pacific Congress of Cardiology, pp. 101, Kyoto, Japan, June 2009.
25. Tsai Lung-Wen, Yang-Ing Fang, Yang-Ten Fang, “An Evaluation of Heart Rate Variability between MVP and a Normal Taiwanese Population”, 17th Asian Pacific Congress of Cardiology, pp. S104, Kyoto, Japan, June 2009.
26. Horan LG, “The quest for optimal electrocardiography”, The American journal of cardiology, 41, pp. 126 – 129, January 1978.
27. Cobb M, “Exorcizing the animal spirits: Jan Swammerdam on nerve function”, Nature Reviews Neuroscience, 3, pp. 395 – 400, May 2002.
28. Mr. Sowdon, Mr. Hawes, Annual Report 1774: Humane Society, pp 31-32, London.
29. Driscol TE, “The Remarkable Dr. Abildgaard and Countershock:
The Bicentennial of His Electrical Experiments on Animals”, Annals of internal medicine, 83, pp. 878 – 882, December 1975.
30. Galvani L, “De viribus Electritatis in motu musculari Commentarius”, De Bononiensi Scientiarum et Artium Instituto atque Academia commentarii, 7, pp. 363 – 418, 1791.
31. Matteucci C., “Sur un phenomene physiologique produit par les muscle contraction”, Annals of chemistry et physiology, 6, pp. 339 – 341, 1842.
32. Du Bois-Reymond E., “Untersuchungen uber thierische Elektricitat”, 2, pp. 256, Reimer, Berlin, 1848.
33. von Koelliker A, Muller H, “Nachweis der negativen Schwankung des Muskelstroms am naturlich sich kontrahierenden Herzen”, Verhandlungen der Physikalisch-Medizinischen Gesellschaft in Wurzberg. 6, pp. 528 – 533, 1856.
34. Marey EJ, “Des variations electriques des muscles et du couer en particulier etudies aumoyen de l'electrometre de M Lippman”, Compres Rendus Hebdomadaires des Seances del'Acadamie des sciences, 82, pp. 975 – 977, 1876.
35. Sanderson JB, “Experimental results relating to the rhythmical and excitatory motions of the ventricle of the frog”, Proceedings of the Royal Society of London, 27, pp. 410 – 414, 1878.
36. Waller AD, “A demonstration on man of electromotive changes accompanying the heart's beat”, The Journal of physiology, 8, pp. 229 – 234, 1887.
37. Einthoven W, “Ueber die Form des menschlichen Electmcardiogmmms”, Arch fd Ges Physiol, 60, pp. 101 – 123, 1895.
38. Einthoven W, “The different forms of the human electrocardiogram and their signification”, Lancet, 1, pp. 853 – 861, 1912.
39. Wilson NF, et al., “Electrocardiograms that represent the potential variations of a single electrode”, American heart journal, 9, pp. 447 – 458, 1934.
40. Goldberger E, “The aVL, aVR, and aVF leads: A simplification of standard lead electrocardiography”, American heart journal, 24, pp. 378 – 396, 1942.
41. Wilson FN, et al., “The precordial electrocardiogram”, American heart journal, 27, pp. 19 – 85, 1944.
42. Zalenski R, et al., “Assessing the diagnostic value of an ECG containing leads V4R, V8, and V9: The 15-Lead ECG”, Annals of Emergency Medicine, 22, pp. 786 – 793, 1993.
43. Vander AJ., et al., Human physiology, seventh edition, McGraw-Hill, Inc., USA, 1998.
44. Guyton AC., John E. Hall, Textbook of Medical Physiology, eleventh, Elsevier Inc., U.S., 2006.
45. Friedman HH, Diagnostic electrocardiography and vectorcardiography, second edition, McGraw-Hill Inc., U.S., February 1971.
46. Hon EH., Lee ST., “Electronic evaluations of the fetal heart rate patterns preceding fetal death, further observations”, American journal of obstetrics and gynecology, 87, pp. 814 – 826, November 1965.
47. Wolf MM, et al., “Sinus arrhythmia in acute myocardial infarction”, The Medical journal of Australia, 2, pp. 52 – 53, July 1978.
48. Kleiger RE, et al., “Decreased heart rate variability and its association with increased mortality after acute myocardial infarction”, The American journal of cardiology, 59, pp. 256 – 262, February 1987.
49. Malik M, et al., “Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques”, European heart journal, 10, pp. 1060 – 1074, December 1989.
50. Bigger JT, et al., “Frequency domain measures of heart period variability and mortality after myocardial infarction”, Circulation, 85, pp. 164 – 171, January 1992.
51. Akselrod S, et al., “Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control”, Science, 213, pp. 220 – 222, July 1981.
52. Ewing DJ, et al., "New method for assessing cardiac parasympathetic activity using 24 hour electrocardiograms", British Heart Journal, 52, pp. 396 – 402, October 1984.
53. Dougherty CM, Burr RL., “Comparison of heart rate variability in survivors and nonsurvivors of sudden cardiac arrest”, The American journal of cardiology, 70, pp. 441 – 448, August 1992.
54. Levy MN, Martin PJ, “Neural Regulation of the Heart Beat”, Annual review of physiology, 43, pp. 443-453, October 1981.
55. Glick G, Braunwald E., “Relative role of the sympathetic and parasympathetic nervous systems in the reflex control of heart rate”, Circulation research, 16, pp. 363 – 375, 1965.
56. Saul JP, et al., “Analysis of long term heart rate variability: methods, 1/f scaling and implications”, Computers in cardiology, 14, pp. 419 – 422, 1988.
57. Kay SM, Marple, SL., “Spectrum analysis - A modern perspective”, Proceedings of the IEEE, 69, pp. 1380 – 1419, November 1981.
58. Sayers BM. “Analysis of heart rate variability”, Ergonomics, 16, pp. 17 – 32, January 1973.
59. Hirsh JA, Bishop B, “Respiratory sinus arrhythmia in humans; how breathing pattern modulates heart rate”, American journal of physiology. Heart and circulatory physiology, 241, pp. H620 – H629, October 1981.
60. Akselrod S, et al., “Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control”, Science, 213, pp. 220 – 222, July 1981.
61. Pagani M, et al., “Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog”, Circulation research, 59, pp. 178 – 193, August 1986.
62. Malliani A, et al., “Cardiovascular neural regulation explored in the frequency domain”. Circulation, 84, pp. 482 – 492, August 1991.
63. Furlan R, et al., “Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects”, Circulation, 81, pp. 537 – 547, February 1990.
64. Du XJ, et al., “Sex differences in the parasympathetic nerve control of rat heart”, Clinical and experimental pharmacology & physiology, 21, pp. 485 – 493, June 1994.
65. Du XJ, et al., “Cardiovascular protection by oestrogen is partly mediated through modulation of autonomic nervous function”, Cardiovascular research, 30, pp. 161 – 165, August 1995.
66. Dart AM, “Gender, sex hormones and autonomic nervous control of the cardiovascular system”, Cardiovascular Research, 53, pp. 678 – 687, 2002.
67. Yasuaki Noguchi, et al., “Component analysis of heart rate variability spectra and mental load”, Conf Proc IEEE Eng Med Biol Soc, pp. 391-392, 1993
68. Gamelin FX, et al., “Validity of the polar S810 heart rate monitor to measure R-R intervals at rest”, Medicine and science in sports and exercise, 38, pp. 887 – 893, May 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top