跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李汶珈
研究生(外文):Li, Wen Chia
論文名稱:一種環氧矽膠固化熱裂解之研究
論文名稱(外文):A Study of Thermal Cracking of Epoxy Silica Gel Condensate
指導教授:劉世鈞劉世鈞引用關係
指導教授(外文):Liu, Shi-Jun
口試委員:張家欽朱繼文
口試日期:2015-09-08
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:綠色能源學科技學系碩士在職專班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:環氧修飾矽膠封裝矽膠固化矽膠熱裂解
外文關鍵詞:epoxy modified silicone resinencapsulatedthermal curing of siliconethermal decomposition of silicone resin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究在將發光二極體封裝環氧有機矽與環氧化合物複合材料。分別由傅里葉轉換紅外光譜(FTIR)、固化動力學和熱性能、溫等溫差示掃描量熱法(DSC)和熱重分析儀(TGA)進行調查,根據等溫測量的方法得到的固化反應的活化能(Ea)。在LED有機環氧矽烷封裝材料的研究現況以及存在的問題。有機矽封裝材料被認為是大功率LED器件封裝的最佳材料。
FTIR光譜圖有機端官能基反應,添加比例較少的三乙胺,反而容易促使Si-O-Si類梯形狀樹脂容易形成,但是添加量往上增加過量時,發現到其實一級胺添加過量導致有太多的殘餘胺基。熱重量分析的結果表明,目前矽樹脂可以製備成在紫外光區有大約95%的透光率,增加大功率LED的器件的光透率增加發光強度和效率。由於CaN晶片具有高的折射率(約為2.2),為了能夠有效地減少介面折射帶來的光損失,盡可能提高光效率,要求矽膠和透鏡材料的折射率盡可能高。
目前許多LED封裝企業改用矽樹脂作為封裝材料,以提高LED的壽命。矽樹脂材料的耐紫外光性、耐熱性,不會讓有環氧材料感光層變黃和分層問題,並有良好的機械特性、使用壽命發光效率更高。為什麼要選用有機矽聚合物作為封裝材料的基體,主要的原因是有機矽以Si-O-Si鍵為主鏈,Si-O鍵具有很高的鍵能和很高的離子化傾向,決定用有機矽樹脂具有多方面的優點有耐UV光老化、耐冷熱沖擊、高透明性、高硬度與基板黏接性好的特點。

The study mixes octyl trimethoxysilane (OTMS) with solidified BPF epoxy resin, BPA epoxy resin and anhydride, and makes investigation by Fourier transform infrared spectroscopy (FTIR), curing kinetics and thermal properties, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). According to constant-temperature measurement method, the activation energy (Ea) of curing reaction is acquired. Regarding the current research conditions and existing problems of organic epoxy silane LED packaging material, organic silicon packaging material has been considered as the best material for packaging of high-power LED device.
As known from the FTIR image, the heat resistance and glass transition temperature of organic-inorganic hybrid is effectively enhanced. In order to prove that organic and inorganic parts exist in hybrid simultaneously, the paper lets epoxy-acrylate hybrid carry out FTIR analysis. Therefore, it is found that acrylate really grafts on the surface of silica nanoparticles, and epoxy really grafts on the surface of silica nanoparticles. The thermal gravimetric analysis results reveal that the epoxy resin/titanium dioxide organic-inorganic material prepared in experiment has successfully changed amorphous titanium dioxide to be anatase titania. Currently, organic silicon resin can be prepared to have transmittance of over 95% in ultraviolet zone, increase the light transmittance of high-power LED, and raise the luminous intensity and efficiency. Since CaN chip has high refractive index (around 2.2), in order to effectively decrease the light loss brought by interface refraction, light extraction efficiency has to be increased as much as possible, and refraction rate of silicon and lens material also has to be increased as high as possible.
Currently, many LED packaging enterprises have changed to use silicon resin as packaging material for replacing epoxy resin, intending to lengthen the life of LED. The heat resistance and ultraviolet resistance of silicon resin material are even more strengthened, without creating yellowing and layering problems to the photosensitive layer of epoxy resin material. Besides, silicon resin has good mechanical properties that lengthen its life and enhance its luminous efficiency. The main reason for enterprises to choose organic silicon polymer as the substrate of packing material is that organic silicon has Si-O-Si bond as its main bond. Si-O bond has very high bonding energy and very high tendency to ionization. The determination to use organic silicon resin has many advantages in different aspects. When it is under high temperature or radiation, the chemical bond between atoms does not break, and the substances cannot be decomposed easily; and when it is under low temperature, it has its properties kept very well.

第一章緒論 1
1-1發光二極體的發展 1
1-1-1水平式結構發光二極體元件 4
1-1-2 Thin-GaN 垂直式結構發光二極體元件 7
1-1-3 覆晶式結構發光二極體元件 8
1-1-4 高功率發光二極體 9
1-2 LED元件製作 11
1-2-1 磊晶製造 11
1-2-2晶粒製造 13
1-2-3封裝材料 13
1-2-4發光二極體標準測試 18
1-2-5封裝材料的演進 19
1-3矽烷偶合劑封裝 21
1-4研究目的與架構 40
第二章 實驗步驟與方法 41
2-1實驗目的 41
2-2 實驗流程 42
2-3實驗材料 44
2-4 試驗設備 44
2-7 複合膜的製備 44
2-8 複合膜封裝接合體製備 45
2-9 耐熱變化試驗 45
2-10 熱重損失測量 45
2-11 複合膜封裝材料分析 45
第三章 結果與討論 46
3-1 研究複合膜聚合物材料分析 46
3-2 研究複合膜硬化聚合物 46
3-2-1環氧有機矽實驗 47
3-3 複合膜之重量組成及分解溫度分折 49
3-3-1 環氧有機矽酸酐微調實驗 49
3-3-2 環氧有機老化實驗 51
3-4 複合膜總反應的吸放熱分折 54
第四章 結論 56
4-1 結論 56


1.Alvarado, S. F., et al. "Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope." Physical Review Letters 81.5 (1998): 1082.
2.Horng, R. H., et al. "AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology." Applied physics letters 75.2 (1999): 154-156.
3.Matsuoka, T., et al. "paper presented at the Proceedings of the 16th International Symposium on GaAs and Related Compounds, Karuizawa, 1989." Inst. Phys. Conf. Ser. Vol. 106. 1990.
4.Wakahara, Akihiro, and Akira Yoshida. "Heteroepitaxial growth of InN by microwave‐excited metalorganic vapor phase epitaxy." Applied Physics Letters 54.8 (1989): 709-711.
5.Friedel, C., and J. M. Crafts. "On a new general method of synthesis of hydrocarbons ketones, etc." Compt. rend 84 (1877): 1392-1450.
6.Vach, Holger. "Symmetric and irregular aromatic silicon nanoclusters." Chemical Physics Letters 614 (2014): 199-203.
7.Brinker, C. Jeffrey, and George W. Scherer. "Sol-gel science, 1990." New York, Academic Press. (1990).
8.黃銳、王旭、李忠明,2002,奈米塑膠-聚合物/奈米無機物複合材料研製、應用與發展,第一版,10-48,北京市:中國輕工業出版社
9.Fu, Bruce X., et al. "Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions." Journal of Polymer Science Part B: Polymer Physics 39.22 (2001): 2727-2739.
10.Baney, Ronald H., et al. "Silsesquioxanes." Chemical Reviews 95.5 (1995): 1409-1430.
11.張亞峰, and 孫陸逸. "籠型六面體倍蘭矽氧烷衍生物製備聚合物納米複合材料." 化學世界 42.2 (2001): 98-102.
12.Chiang, Chin-Lung, and Chen-Chi M. Ma. "Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method." European polymer journal 38.11 (2002): 2219-2224.
13.Chiang, Chin-Lung, et al. "Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid ceramers prepared by the sol-gel method." Polymer degradation and stability 77.2 (2002): 273-278.
14.賴耿陽. "聚醘胺樹酯." (1989): P167.
15.C. L. Chiang, C. C. M. Ma, European Polymer Journal, 38(2002),2219-2224.
16.C. L. Chiang, F. Y. Wang, C. C. M. Maa, H. R. Chang, Polymer Degradation and Stability, 77(2002) 273-278.
17.Liu, Ying-Ling, et al. "Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica." Polymer 44.18 (2003): 5159-5167.
18.Cardiano, P., et al. "Epoxy-silica polymers as restoration materials. Part II." Polymer 44.16 (2003): 4435-4441.
19.陳宏德. "聚矽氧烷改質環氧樹脂之硬化與增韌研究." (1997).
20.Crivello, James V., and Ramesh Narayan. "Novel epoxynorbornane monomers. 1. Synthesis and characterization." Macromolecules 29.1 (1996): 433-438
21.Crivello, J. V., and Daoshen Bi. "Regioselective hydrosilations. IV. The synthesis and polymerization of monomers containing epoxy and alkoxysilane groups." Journal of Polymer Science Part A: Polymer Chemistry 31.12 (1993): 3121-3132.
22.Smith, S. D., T. E. Long, and J. E. McGrath. "Thermogravimetric analysis of poly (alkyl methacrylates) and poly (methylmethacrylate‐g‐dimethyl siloxane) graft copolymers." Journal of Polymer Science Part A: Polymer Chemistry 32.9 (1994): 1747-1753.
23.Kim, Whan Gun, and Je Hong Ryu. "Physical properties of epoxy molding compound for semiconductor encapsulation according to the coupling treatment process change of silica." Journal of applied polymer science 65.10 (1997): 1975-1982.
24.Ni, Yong, Sixun Zheng, and Kangming Nie. "Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes." Polymer 45.16 (2004): 5557-5568.
25.Hedrick, James L., et al. "Chemical modification of matrix resin networks with engineering thermoplastics." Polymer Bulletin 13.3 (1985): 201-208.
26.Sameh Sarhan/Chris Richardson,加速調光頻率PWM實現精準LED調光,新電子科技雜誌,2009年2月號275期,http://www.mem.com.tw/article_content.asp?sn=0902110013
27. Horng, R. H., et al. "AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology." Applied physics letters 75.2 (1999): 154-156.
28.Horng, R. H., et al. "AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology." Applied physics letters 75.2 (1999): 154-156.
29.楊啟榮, "LED製程與應用技術講義," 國立台灣師範大學,( 2002)
30.陳錫銘 ,”LED技術發展與趨勢”,奇力光電科技,(2009)
31.Dr Terry V. Clapp. " Silicone Solutions for LED Lighting" Dow Corning Corporation

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top