跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳玉珍
研究生(外文):Yu-Chen Wu
論文名稱:呼吸道融合病毒B亞群G蛋白質基因變異之分析及A和B亞群在細胞培養中細胞激素產生之比較
論文名稱(外文):Variation of Glycoprotein G Gene of Subgroup B Respiratory Syncytial Virus and Comparison of Cytokine Production in Cell Culture of RSV Subgroup A and B
指導教授:高全良高全良引用關係
指導教授(外文):Chuan-Liang Kao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫事技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:89
中文關鍵詞:呼吸道融合病毒G蛋白質基因細胞激素(IL-8IL-6RANTES)肺泡上皮細胞(A549)支氣管上皮細胞(BEAS-2B)
外文關鍵詞:Respiratory Syncytial VirusGlycoprotein G genecytokine(IL-6IL-8RANTES)pulmonary epithelial cell(A549)bronchial epithelial cell(BEAS-2B)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
呼吸道融合病毒(Respiratory Syncytial Virus)是一具有套膜之病毒。分類學上屬於副黏液病毒科(Paramyxoviridae)之肺炎病毒屬(pneumovirus),臨床上易造成小孩下呼吸道感染疾病。RSV是一單股負性核糖核酸病毒(single strain-negative sense RNA virus),其病毒基因可製造出十種不同的蛋白,其中F和G蛋白都位於病毒外套膜上,是一種醣化蛋白。
1985年,利用單株抗體可將RSV分成A和B兩種亞群。在RSV十種蛋白中,G蛋白在不同亞群間變異性最大,A和B亞群間胺基酸序列僅具有53﹪相似性,各亞群內之病毒株間亦有相異存在,我們實驗室曾證實台北地區A亞群間胺基酸之差異為11%。為進一步瞭解台北地區RSV B亞群之核酸變異情形,我們針對1984至1998年間,台北地區之RSV B亞群之臨床分離株,以RT-PCR方法和核酸自動定序儀直接定出G蛋白質基因序列。結果顯示台北地區B亞群分離株彼此之間,其核酸相似性為93~99﹪,而胺基酸序列為87~99﹪。將核酸序列轉換成胺基酸序列作比較時,發現其變異位置主要發生於胺基酸序列80-154及198-300間,而胺基酸155-197為穩定區域,胺基酸變異較國外為大。另根據G蛋白質基因核酸序列,做出種系分析圖(phylogenic tree)。台北地區分離株大多數屬於相同cluster(cluster I),而1984年和1998年中,各有少數分離株(840085、840196、981480)屬另一cluster (cluster II),此一特殊基因型態分離株是否能再繼續流行,而取代原先族群,或是此特殊基因型是來自原始基因型,而有再次流行的可能性,則需長期分析來證明。
RSV在臨床上會造成呼吸道綜合病徵,支氣管炎、細小支氣管炎、肺炎等症狀,嚴重者甚至會造成死亡。通常在肺泡之感染所引起之症狀遠較支氣管感染引起之症狀嚴重,又A亞群在臨床上之症狀亦較B亞群嚴重。此種RSV在不同部位之症狀表現差異,及兩亞群RSV致病性之差異,是否與其細胞上產生細胞激素之情形有關?我們比較此兩亞群病毒感染肺泡上皮細胞(A549)及支氣管上皮細胞(BEAS-2B),細胞激素IL-8、IL-6及RANTES產生之情形。研究結果顯示,不論下呼吸道較上端細胞(支氣管,BEAS-2B)及深層部位(肺泡細胞,A549),A亞群產生IL-8、IL-6及RANTES均多於B亞群,此可解釋臨床上,A亞群感染造成之疾病比B亞群嚴重之因。又在肺泡細胞中,A、B兩亞群產生IL-8、IL-6及RANTES均較呼吸道上端細胞多,此也可說明RSV在肺泡部位引起之症狀較嚴重之可能原因。

Respiratory syncytial virus (RSV), an enveloped virus, is classified within the genus Pneumovirus of the family Paraxoviridae. RSV is the most important cause of lower respiratory tract infection in infants and vulnerable adults. The RSV genome is a single strand negative sense of RNA composed of approximately 15000 nucleotides that are transcribed into 10 major mRNA. Each of the mRNA encodes a major viral protein. Three of these proteins are transmembrane surface proteins ( G, F and SH).
On the basis of monoclonal antibody studies in 1985, RSV has been classified into two major subgroups, A and B. The G protein is the most variable gene product between RSV isolates. Sequence identity at the amino acid level is only 53% between the G protein of the prototype strains of subgroup A and B. Sequence variation has been observed among the G proteins of HRSV isolates of the same antigenic group. Our laboratory found that 11% sequence variation at amino acid level in Taipei RSV subgroup A isolates. To elucidate the variation of G gene of subgroup B RSV isolated in Taipei area, 43 strains of subgroup B from 1984-1998 were enrolled in this study. G protein genes of subgroup B RSV were amplified by RT-PCR. The nucleotide sequence of G gene was determined by dye termination autosequencing method. The identity of nucleotide and amino acid sequence of 43 RSV isolates in Taipei from 1984-1998 were compared and three subgroup B reference strain (8/60: 1960; CH18537: 1962; 9320: 1977) were used as reference. Nucleotide sequences homology and amino acid homology of 43 strains of subgroup B RSV were 93-99% and 87-99% respectively. The deduced amino acids sequence in cytoplasmic and transmembrane domains are conserved. Variation was found in two regions of extracellular domain; amino acid 80-154 and amino acid 198-300 region, separated by a highly conserved region (amino acid 155-197). The conserved region of G protein gene of subgroup B RSV in Taipei was smaller than the same region in strains isolated in other countries. The phylogenic tree of Taipei strains and some strains isolated in other countries was established by Neighbor-joining method. We find that most strains of Taipei isolates from 1984-1998 are grouped into one cluster (cluster I) and only three strains (840085, 840196, and 981480) are grouped into another cluster (cluster II).
RSV infection of the lower respiratory tract in infants typically causes acute bronchiolitis and pneumonia but may result in persistent abnormalities in pulmonary function and syndrome of wheezing and respiratory distress. Hospitalized and death causes are estimated very high in each year. Syndrome of infection of RSV in alveolar is more serious than in bronchus. Subgroup A RSV causes disease more severe than subgroup B virus causes. The correlations of clinical manifestation in different part of respiratory tract infected with different RSV subgroups are an interested issue. Dose cytokine production among these areas between RSV subgroup A and B infection plays another important role in the pathogenesis of RSV infection? In order to elucidate these questions, the IL-6, IL-8, and RANTES production in the human alveolar epithelial cell (A549), and human bronchial epithelial cell (BEAS-2B) infected with RSV A and B were compared. The results indicate that both subgroup A and B can induce all these three cytokines in A549 and BEAS-2B cells. In general, the production of cytokines by subgroup A and B was usually found higher in A549 than BEAS-2B. We compared the amount of cytokines production, RSV subgroup A produces more amounts of cytokine than subgroup B. This finding may explain the pathogenicity of subgroup A is higher than subgroup B.

英文摘要 ………….…………….………………………. 1
中文摘要 ……………………….……………………….. 4
緒論 …………………………….………………………... 6
研究材料及實驗方法…………………………….……… 15
研究材料 …………………..………………….……… 15
實驗方法 ………………………………..……………. 18
壹、 G蛋白質基因之分析 …………….……… 18
Ⅰ. 病毒繼代培養 ……………….…………18
Ⅱ. 病毒核酸之增幅 …………….…………. 20
Ⅲ. 核酸定序 ……………………..……………25
貳、 細胞激素之分析 ……………..………………. 28
Ⅰ. 病毒製備 ……………..…………………….28
Ⅱ. 實驗設計 …………..………………………31
Ⅲ. 細胞激素之測定 ..…………………………33
結果 ………………………..………………………. 35
壹、 G蛋白質基因之分析 …..……………………35
貳、 細胞激素之分析 …...………………………… 39
討論 ……………………………………………………. 43
壹、 G蛋白質基因之分析 ………………………….43
貳、 細胞激素之分析 ……..………………………. 47
圖表 …………………………………………………..50
參考文獻 …………………………………………..… 82

1. Morris JA., Blount RE., Sarage RE. Recovery of
cytopathogenic agent from chimpanzees with coryza. Proc.
Soc. Exp. Biol. Med. 1956; 92:544-50
2. Canock RM, Roizman B, Myers R. Recovery from infants with
respiratory illness of a virus related to chimpanzee coryza
agent I isolation, properties and characterization. Am. J.
Hyg. 1957;66:281-90
3. Bachi, T. Direct observation of the budding and fusion of an
enveloped virus by video microscopy. J. Cell Biol.1988;107:
1689-95
4. David W., Kingsbury. The molecular biology of human
respiratory syncytial virus (RSV) of the genus pneumovirus.
The Pamamyxoviruses. 1991;.Chapter 4:103-4
5. Richman AV, Pedeira FA, Tauraso NM. Attempts to demonstrate
hemagglutination and hemadsorption by respiratory syncytial
virus. App. Microbiol. 1971;21:1099-100
6. Spriggs MK, Collins PL.. Fusion glycoproteins of human
parainfluenza virus 3: nucleotide sequenced of the gene,
direct identification of the cleavage activation site, and
comparison with other paramyxoviruses. Virology.1971;152:
241-51
7. Bachi T, Howe C. Morphogenesis and ultrastruction of
respiratory syncytial virus. J.Virol. 1973;12:1173-80
8. Huang Y.T., and Wertz G.W. The genome of respiratory
syncytial virus is a negative stranded RNA that codes for at
least sevsen mRNA species. J. Virol. 1983;43:150-7
9. Collins PL, Wertz GW. cDNA cloning and transcriptional
mapping of nine polyadenylated RNAs encoded by the genome of
human respiratory syncytial virus. Proc. Nal. Acad. Sci.
1983;80:3208-12
10. Collins PL, Wertz GW. Nucleotide sequence of the 1B and 1C
nonstructureal protein mRNAs of human respiratory syncytial
virus. Virology. 1985;143:442-51
11. Collins PL, Huang YT, Wertz GW.. Identification of a tenth
mRNA of respiratory syncytial virus and assignment of
polypeptides to the 10 viral genes. J. Virol. 1984;49:572-8
12. Collins PL, Anderson K, Langer S.J., Wertz GW. Correct
sequence for the major nucleocapsid protein mRNA of
respiratory syncytial virus. Virology 1985;146:69-77
13. Peeples M, Levine S. Respiratory syncytial virus
polypeptides: Their location in the vorion. Virology
1985;95 :137-45
14. Grosfeld H, Hill MG, Collins PL. RNA replication by
respiratory syncytial virus (RSV) is directed by the N, P,
and L proteins; transcription also occurs under these
conditions but requites RSV superinfection for efficient
synthesis of full-length mRNA. J. Virol. 1995; 69(9):5677-86
15. Stec DS, Hill MG, Collins PL. Sequence analysis of the
polymerase L gene of human respiratory syncytial virus and
predicted phylogeny of nonsegmented negative-strand
viruses. Virology 1992;183:273-87
16. Barr J, Chammbers P, Pringle CR Easton AJ. Sequence of the
major nucleocapsid protein gene of pneumonia virus of mice:
sequence comparisons suggest structureal homology between
nucleocapsid proteins of pneumovirus , paramyxovirus,
rhabdoviruses and fialoviruses. J Gen. Virol. 1991;71:481-5
17. Navarro J, Lopes-Otin C, Villanueva N. Location of
phosphorylated residues in human respiratory syncytial
virus phosphoproteion. J. Gen. Virol. 1991;72:1455-9
18. Johnson PR, Collins PL, Sequence comparsion of
phosphoprotein mRNA of antigenic subgroup A and B of human
respiratory syncytial virus identifies a highly divergent
domain in the predicted protein. J. Gen Virol. 1990;71:481-5
19. Emily Burke, Lesley Dupuy, Cynthia Wall, and Sailen
Barik.Role of cellular actin in the gene expression and
morphogenesis of human rsepiratory syncytial virus.
Virology 1998;252(1):137-48
20. Collins PL, Hill MG, Cristina J, Grosfeld H. Transcription
elongation factor of respiratory synsytial virus, a
nonsegmented negative-strand RNA virus. Proc. Natl. Acad.
Sci. USA 1996;93:81-5
21. Olmsted RA., and Collins PL. The 1A protein of respiratory
syncytial virus is an integral membrane protein present as
multiple structurally distanct species. J. Virol.1989;63:
2019-29
22. Heminway, B.R., Yu. Y., Tanaka. Y., Perrine, K. G.,
Gustafson, E., Bernstein, J. M., and Galinski. S., Analysis
of respiratory syncytial virus F, G, and SH protein in cell
fusion. Virology 1994;200:801-5
23. Perez M, Garacia-Barreno B, Penas C, and Melero JA.
Carrasco L, Guinea R. Membrane permeability changes induced
in Escherichia coli by the SH protein of human respiratory
syncytial virus. Virology 1997;235:342-51
24. Walsh EE, Hruska JF. Monclonal antibodies to respiratory
syncytial virus proteins: identification of the fusion
protein. J. Virol. 1983;47:171-7
25. Levine S, Klaiber-Franco R, Paradiso PR. Demonstration the
glycoprotein G is the attachment glycoprotin of respiratory
syncytial virus. J. Gen. Virol. 1987;68:2521-4
26. C. Bourgeois, J.B. Bour, K. Lidholt, C. Gauthray, P.
Pothier., Heparin-like structures on respiratory syncytial
virus are involoed in its infectivity in vitro. J. Virol.
1998;72(9):7221-7
27. Akerlind-Stopner, Mufson MA, Respiratory virus. In:
Spectore S, Lancz G. ed. Clinical Virology Manua. 2nd ed.
1992;p329-32
28. La Via WV, Marks MI, Stutman HR. Respiratory syncytial
virus puzzle: clinical features, pathophysiology,
treatment, and prevention. J. Pediatr. 1992;121:503-10
29. Whimbey E, Bodey GP. Viral pneumonia in the
immunocompromised with neoplastic disease: the role of
common community respiratory virus. Semin. Respir Infect.
1992;7:122-31
30. Denny FW, Clyde WA Jr. Acute lower respiratory infections
in nonhospitalized children. J. Pediatr. 1986;108:635-46
31. Joseph B. D. Helene F.R. Respiratory syncytial virus
infection: immune response, immunopathogenesis, and
treatment. Clin. Micro. Rev. 1999;12(2):298-309
32. Mufson MA, Orvell C, Rafnar B, Norrby E. Two distanct
subtypes of human respiratory syncytial virus. J. Gen.
Virol. 1985;66:2111-24
33. Aderson L.J, Hierholzer JC, Tson C, Hendr RM, Fernie BF,
Stone Y, Mclntoch K. Antigenic characterization of
respiratory syncytial virus with monclonal antibodies. J.
Infect. Dis. 1985;151:626-33
34. Johson PR, Spriggs MK, Olmsted RA, Collins PL. The G
glycoprotein of human respiratory syncytial virus of
subgroup A and B: extensive sequence divergence between
antigenically related proteins. Proc. Natl. Acad Sci USA.
1987;84:5625-9
35. Akerlind, B., E. Norby, C. Orvell, and M. A. Mufson. 1988.
Respiratory syncytial virus: heterogeneity of subgroup B
strains. J. Gen. Virol. 69:2145-2154
36. Gristina J, Moya A, Russi J, Hortal M, Albo C, Garcia-
Barreno B, Garcia O, Melero JA, and Portela A. Evolution
of the G and genes of human respiratory syncytial virus
(subgroup A) studied by the RNase A mismatch cleavage
method. Virology1991;184:210-8
37. Cane, P.A., and C. R. Pringle. Respiratory syncytial virus
heterogeneity during an epidemic: analysis by limited
nucleotide sequencing (SH gene) and restriction mapping (N
gene). J. Gen. Virol. 1991;72:349-57
38. Cane P.A., and C. R. Pringle. Molecular epidemiology of
respiratory syncytial virus: rapid identification of
subgroup A lineages. J. Virol. Methods 1992;40:297-306
39. Patricia A.C., and Craig R. P. Evolution of subgroup A
respiratory syncytial virus: evidence for progressive
accumulation of amino acid changes in the attachment
protein. J. Virol. 1995;69(5):2918-25
40. Garcia, O., Martin M., Dopazo, J., Arbiza, J., Frabasile,
S., Russi, J., Hortal, M., Perez-Brena, P., Martiza, I.,
Garcia-Barreno, B & Melero,J.A. Evolution of human
respiratory syncytial virus (subgroup A): cocirculating
lineages and correlation of genetic and antigenic changes
in the G glycoprotein. J. Virol. 1994;68:5448-59
41. Sullender W.M., Mufson M.A., Anderson L.J., Wertz G.W.
Genetic diversity of the attachment protein of subgroup B
respiratory syncytial viruses. J. Virol. 1991;65(10):5425-34
42. Olmsted, R.A., Elango, N., Prince, G.A., Murphy, B.R.,
Johnson, P.R., Moss, B., Chanock, R.M., & Collins, P.L.
Expression of the F glycoprotein of respiratory syncytial
virus by a recombinant vaccina virus: comparison of the
individual contributions of the F and G glycoproteins to
host immunity. Pro. Nat. Acad. Sci.USA 1986;83:7462-6
43. Stott E.J., Taylor G., Ball L.A., Anderson K., Young K.K.-
Y., King A.M.Q., & Wwetz G.W. Immune and histpathological
responses in animals vaccinated with recombinant vaccina
viruses that express individual genes of human respiratory
syncytial virus. J. Virol. 1987;61:3855-61
44. Murphy B.R., Hall S.L., Kulbarin A.B., Crowe J.E., Collins
P.L., Connors M., Karron R.A., & Chanock R.M. An update on
approaches to the development of respiratory syncytial
virus (RSV) and parainfluenza virus type3 (PIV3) vaccines.
Virus Research 1994;32:13-36
45. Hancock G.E., Speelman D.J., Heers K., Bortell E., Smith
J., & Cosco C. Genereration of atypical pulmonary
inflammatory responses in BALB/c mice after immunization
with the native attachment (G) glycoprotein of respiratory
syncytial virus. J. Virol. 1996;70:7783-91
46. Barney S.G. Pathogenesis of respiratory syncytial virus
vaccine-augmented pathology. Am. J. Respir. Crit. Care Med.
1995; 152:S63-6
47. Melero J.A., Barreno B.G., Martinez I., Pringle C.R., Cane
P.A. Antigenic structure, evolution and immunobiology of
human respiratory syncytial virus attachment (G) protein.
J. Gen. Virol. 1997;78:2411-8
48. Collins P.L., Mottet G. Oligomerization and
posttranslational processing of glycoprotein G of human
respiratory syncytial virus. Altered O-glycosylation in the
presence of brefeldin A. J. Gen. Virol.1992; 73:849-63
49. Lambert D.M. Role of oligosaccharides in the structure and
function of respiratory syncytial virus glycoproteins.
Virology 1988; 164:458-66
50. Roberts S.R., Lichtenstein D., Ball L.A., & Wertz, G.W. The
membrane-associated and secreted forms of the respiratory
syncytial virus attachment glycoprotein G are synthesized
from alternative initiation codons. J. Virol. 1994;68:4538-
46
51. Langedijk P.M., Schaaper M.M., Meloen R.H., Oirschot J.T.
Proposed three-dimensional model for the attachment protein
G of respiratory syncytial virus. J. Gen. Virol. 1996;77:
1249-57
52. Martinez I., Dopazo J. & Melero J.A. Antigenic structure of
the human respiratory syncytial virus G glycoprotein and
relevance of hypermutation events for the generation of
antigenic variants. J. Gen. Virol. 1997;78:2419-29
53. Martinez I, Melero J.A. Enhanced neutralization of human
respiratory syncytial virus by mixtures of monoclonal
antibodies to the attachment (G) glycoprotein. J. Gen.
Virol. 1998; 79:2215-20
54. Peret C.T., Hall C.B., Schnabel K.C., Golub J.A., Anderson
L.J. Circulation patterns of genetically distinct group A
and B strains of human respiratory syncytial virus in a
community. J. Gen. Virol. 1998;79:2221-9
55. Noah TL, Becker S. Respiratory syncytial virus-induced
cytokine production by a human bronchial epithelial cell
line. Am. J. Physiol. 1993;265(5 pt 1):1472-8
56. Aherne W., Bird T., Court S. et al. Pathological changes in
virus infections of the lower respiratory tract in
children. J Clin Pathol 1970;23:7-18
57. Waris M.E., Tsou C., Erdman D.D., Zaki S.R., Anderson L.J.
Respiratory syncytial virus infection in BALB/c mice
previously immunized with formalin-inactivated virus induces
enhenced pulmonary inflammatory response with predominant
Th2-like cytokine pattern. J.Virol. 1996; 70:2852-2860
58. Matsuda K., Tsutsumi H., Okamoto Y., Chiba C. Development of
interleukin 6 and tumor necrosis factor alpha activity in
nasopharyngeal secretions of infants and children during
infection with respiratory syncytial virus. Clin Diagn Lab
Immunol 1995;2:322-324
59. Becker S., Koren H.S., Henke D.C. Interleukin-8 expression
in normal epithelium and its modulation by infection with
respiratory syncytial virus and cytokine tumor necrosis
factor, interleukin-1, and interleukin-6. Am J Respire Cell
Mol Biol 1993;8:20-27
60. Arnold R., Humbert B., Werchau H., Gallati H., Konig W.
Interleukin-8, interleukin-6, and soluble tumor necrosis
factor receptor type I release from a human pulmonary
epithelial cell line (A549) exposed to respiratory
syncytial virus. Imminology 1994;82:126-133
61. Micheal A., Fiedler, Kara Wernke-Dollries, M James Stalk.
Mechanism of RSV-induced IL-8 gene expression in A549 cells
before viral replication. Am. J. Physiol.1996;271(Lung
Cell.Mol.Physiol.15):L963-L971
62. Becker S., Quay J., Soukup J. Cytokine (Tumor necrosis
factor, IL-6, and IL-8) production by respiratory syncytial
virus-infected human alveolar macrophages. The Journal of
Immunology 1991;47:4307-4312
63. Becker S., Reed W., Fredrick W., Henderson, Noah T.L. RSV
infection of human airway epithelial cells causes
preduction of the β-chemokine RANTES. Am. J.Physiol.1997;
272(Lung Cell.Mol.Physiol.16):L512-L520
64. Barbara Olszewska-Pazdrak, Antonella Casola, Asdahito
Saito, Rafeul Alam, Shiela E.Crowe, Fang Mei, Pearay
L.Ogra, Roberto P.Garofalo. Cell-specific expression of
RANTES,MCP-1, and MIP-1α by lower airway epithelial cells
and eosinophils infected with respiratory syncytial virus.
Journal of Virology 1998; 72(6):4756-1764
65. Edward E.Walsh, Kenneth M. McConnochie, Christine E Long,
and Caroline B. Hall. Severity of respiratory syncytial
virus infection is related to virus strain. The Journal of
Infectious Disease1997;175:814-820
66. J. Tawara. Respiratory syncytial virus I. Concentration and
purification of the infectious virus. Acta Med.Okayyama
1978;32(4):265-272
67. 魏品妃. 呼吸道融合病毒G蛋白基因型變異之分析1996 碩士論文
68. 賴瀅如. 呼吸道融合病毒A亞型G蛋白基因型變異之分析1998 碩士論

69. Martinez I., Valdes O., Russi J. Evolutionary pattern of
the G glycotropein of human respiratory syncytial viruses
from antigenic group B: the use of alterative termination
codons and lineage diversification. J. Virol.1999; 80:125-
130
70. Claire S., Francine N., Cecile S., Nguyen N.T., Hans B.,
Johnny B., Jean-Francois L., Michel T. Subgroup specific
protection of mice from respiratory syncytial virus
infection with peptides encompassing the amino acid region
174-187 from the G glycoprotein: the role of cysteinyl
residues in protection. Vaccine 1997;15(4):423-32
71. Caroline Breese Hall. Respiratory syncytial virus.
Pediatric Infection Disease1997; 17:2084-111

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 29.劉進金、張寶堂(1991)“大型山崩之遙測辨識”,遙感探測 第十四期,p 14-68。
2. 29.劉進金、張寶堂(1991)“大型山崩之遙測辨識”,遙感探測 第十四期,p 14-68。
3. 于博芮 (民85). 造口護理的基本概念. 護理新象﹐6﹐457-462。
4. 于博芮 (民85). 造口護理的基本概念. 護理新象﹐6﹐457-462。
5. 22.張渝龍、葉明官 (1991) “高雄縣甲仙至美濃間儲油氣潛能之研究”石油季刊第27卷第3期,中國石油學會。
6. 22.張渝龍、葉明官 (1991) “高雄縣甲仙至美濃間儲油氣潛能之研究”石油季刊第27卷第3期,中國石油學會。
7. 16.陶翼煌 (1997)“利用類神經網路與模糊邏輯預測山崩發生之可能性”,東南學報,20期,p 117-123。
8. 16.陶翼煌 (1997)“利用類神經網路與模糊邏輯預測山崩發生之可能性”,東南學報,20期,p 117-123。
9. 毛家舲 (民79a) . 理論發展與Orem護理理論的介紹 . 護理雜誌﹐37﹐109-116。
10. 毛家舲 (民79a) . 理論發展與Orem護理理論的介紹 . 護理雜誌﹐37﹐109-116。
11. 毛家舲 (民79b) . Orem護理理論的基本認識 . 國防醫學﹐11﹐612-615。
12. 毛家舲 (民79b) . Orem護理理論的基本認識 . 國防醫學﹐11﹐612-615。
13. 林笑 (民83). 骨性關節炎病患生活品質及其相關因素之探討. 護理研究﹐2﹐371-378.
14. 林笑 (民83). 骨性關節炎病患生活品質及其相關因素之探討. 護理研究﹐2﹐371-378.
15. 邱啟潤、王秀紅 (民76). 老年人自我照顧能力及其相關因素之探討. 高雄醫學科學雜誌,3,69-78。