跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/11/01 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱鈞
研究生(外文):Kai-Chun Chang
論文名稱:以高分子/層列黏土合成奈米複合材料作為牙科綴補複合樹脂
論文名稱(外文):Polymer-Smectic Clay Nanocomposite as Dental Restoratives
指導教授:林峰輝林峰輝引用關係林俊彬林俊彬引用關係
指導教授(外文):Feng-Huei LinChun-Pin Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:88
中文關鍵詞:複合樹脂高嶺石奈米複材氟素綴補材料插入作用
外文關鍵詞:composite resinkaolinitenanocompositefluoriderestorative materialsintercalation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:490
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臨床上常用的牙科複合樹脂綴補材料,仍有許多無法解決的問題,例如材料的抗磨耗性,主因是複合樹脂中大多是採用熔融矽、硼矽酸玻璃及石英等作為無機填料,雖然能抑制基質的變形,提高機械強度,但由於一般傳統型的綴補用複合樹脂常因牙齒上下咀嚼食物,使突出的填料顆粒因機械力作用而造成破裂脫落(protruding)現象。由於此類的無機填料無法與樹脂基質形成化學鍵結,將會造成無機填料自樹脂基質鬆脫現象,使牙科複合樹脂綴補材料無法達到臨床要求。
臨床上大多數的複合樹脂無法良好持續釋放氟素,氟素有助鞏固牙齒及有防蛀功效,補牙後敏感的情況亦少發生。本研究目的為改進無機填料與樹脂基質之作用力與氟素的吸收釋放能力。高嶺石(Kaolinite)為一種由許多矽酸鹽層所堆疊構成的黏土礦物,由於層間可被外來分子或離子插入(intercalation),因此理論上可用來製備奈米複合材料。進行有機化處理可將單體或高分子導入層間,再於表面接枝適當構造之高分子,例如Bis-GMA,使無機塡料與高分子樹脂基材具有良好的作用力,增強牙科複合樹脂的機械強度。近十年來有關高分子/黏土(clay)陸續被研究報導,其中最著名的例子為尼龍/蒙脫石(Montmorillonite)奈米複合材料,可大幅增加尼龍的拉伸模數、抗拉強度、熱變形溫度等性質。
本研究的主要方向是改進牙科用複合樹脂中無機填料與樹脂基材的化學鍵結能力,提高磨耗強度使牙綴補材料更具實用性,並藉由高嶺石表面及層間對氟離子具有良好的吸附效果,讓牙綴補複合材料可再吸收、釋放氟素,於預防二次齲齒有良好的功用。我們認為這種複合樹脂於牙綴補材料中可以發揮更好的功用。

The use of light-cured composite resins for restoring cavities in stress-bearing posterior teeth has increased rapidly in recent years. Besides the ability to bond to hard tooth tissues, mediated by adhesive systems, they feature the advantage of good esthetics and are less expensive compared with cast gold inlays and ceramic inlays. However, poor material properties limited the success of composite restorations in posterior teeth. Microleakage, fractures within the body of the restorations, marginal ditching, protruding, and imperfect wear resistance are reported as being the most common causes of failure in posterior composites.
In general, restorative materials that release greater amounts of fluoride have greater caries preventive potential and are desirable, so long as physical and mechanical properties are not adversely affected. The object of this study was to investigate a new composite resin with good bonding between resin matrix and inorganic filler. Besides, It is desirable that restorative material is enough fluoride release for immediate and long-term caries protection. Kaolinite 【Al2Si2O5 (OH) 4】is a layered aluminosilicate of the 1:1 type that is formed by two different types of interlayer surfaces. The organofunctionalization of kaolinite can be made after the intercalation of small polar molecules, such as dimethylsulfoxide (DMSO) and N-methyl formamide (NMF).
A kaolinite/acrylamide intercalation compound was synthesized by guest displacement reaction of a kaolinite/NMF intercalation compound. It is desirable that kaolinite/acrylamide compound could graft on resin matrix and improve the composite resin mechanical properties. It was reported that the surface of kaolinite could absorb fluoride easily at pH<7 and release fluoride at pH>4. We can prepare the anti-caries of fluoride-contaning dental restorative materials by kaolinite intercalation compounds that contained fluoride.

摘要---------------------------------------------------------Ⅰ
英文摘要-----------------------------------------------------Ⅱ
目錄---------------------------------------------------------Ⅲ
圖索引-------------------------------------------------------Ⅵ
表索引-------------------------------------------------------Ⅸ
符號說明-----------------------------------------------------Ⅹ
第一章 導論-------------------------------------------------1
1-1 前言----------------------------------------------------1
1-2 牙科綴補材料的演進--------------------------------------2
1-2-1 銀汞合金(Amalgam)------------------------------------2
1-2-2 玻璃離子體(Glass ionomer)--------------------------2
1-2-3 複合樹脂(Composite resin)--------------------------4
1-3 牙科綴補材料所需具備的條件------------------------------5
1-4 研究背景及目的------------------------------------------6
第二章 理論基礎---------------------------------------------8
2-1 牙用樹脂常用聚合方式------------------------------------8
2-2 樹脂基質的製備------------------------------------------9
2-3 牙科填補材料之性質--------------------------------------11
2-4 高分子黏土奈米複材--------------------------------------14
2-4-1 高嶺石的構造-----------------------------------------15
2-4-2 高嶺石吸附氟化物(Fluoride)理論模型-------------------15
2-4-3 高分子黏土奈米複合材料的製備-------------------------17
2-5 材料破壞力學(Fractural mechanism)---------------------20
2-5-1 理論強度---------------------------------------------20
2-5-2 應力集中---------------------------------------------20
2-5-3 Orowan理論-------------------------------------------21
2-5-4 能量平衡準則-----------------------------------------22
第三章 實驗方法---------------------------------------------24
3-1 實驗儀器------------------------------------------------24
3-2 實驗藥品------------------------------------------------25
3-3 實驗方法及流程------------------------------------------26
3-3-1 填料與複合樹脂製備之流程-----------------------------26
3-3-2 高嶺石/ N-甲基甲醯胺複合物(K-NMF)之製備------------27
3-3-3 高嶺石/二甲亞碸複合物(K-DMSO)之製備----------------29
3-3-4 高嶺石/己二胺含氟複合物之製備------------------------30
3-3-5 高嶺石/醋酸銨含氟複合物之製備------------------------32
3-3-6 高嶺石/丙烯醯胺含氟複合物之製備----------------------33
3-4 複合樹脂之製備------------------------------------------35
3-4-1 高嶺石複合樹脂之製備---------------------------------35
3-4-2 高嶺石/己二胺含氟複合樹脂之製備----------------------37
3-4-3 高嶺石/醋酸銨含氟複合樹脂之製備----------------------39
3-4-4 高嶺石/丙烯醯胺含氟複合樹脂之製備--------------------40
3-5 材料分析與測試------------------------------------------42
3-5-1 X光繞射儀分析(XRD)--------------------------------42
3-5-2 熱分析(TGA/DTA)--------------------------------------43
3-5-3 紅外光光譜儀分析(FT-IR)----------------------------43
3-5-4 機械性質測試-----------------------------------------44
3-5-5 掃瞄式電子顯微分析(SEM)----------------------------48
3-5-6 氟離子濃度測試---------------------------------------48
第四章 結果與討論-------------------------------------------50
4-1 XRD 繞射分析-------------------------------------------50
4-2 TGA/SDT 熱分析-----------------------------------------54
4-3 FT/IR紅外線光譜分析------------------------------------59
4-4 複合樹脂聚合程度評估分析--------------------------------65
4-5 微硬度測試----------------------------------------------70
4-6 抗彎強度測----------------------------------------------72
4-7 破壞韌性測試--------------------------------------------75
4-8 直徑壓縮測試--------------------------------------------76
4-9 抗磨耗測試----------------------------------------------78
4-10 氟離子釋放濃度-----------------------------------------80
第五章 結論-------------------------------------------------83
第六章 未來展望---------------------------------------------84
第七章 參考文獻---------------------------------------------85

1. F.A. Peyton and R.G. Craig. Restorative Dental Material. Saint Louis: The C.V. Mosby Compony, (1971).
2. J.A. Reese and T.M. Valega, Restorative Dental Materials An Overview, London: Quintessencs Publishing Company Ltd., (1985).
3. J. B. Park, "Biomaterials Science and Engineering", New York: Plenum Press, (1984).
4. W.J. O'BRIEN, Dental Materials: Properties and Selection, Chicago: Quintessencs Publishing Co., Inc., (1989).
5. C.D. Sirnth and D.F. Williams, "Biocompatibility of Dental Materials, Vol. IS ", Boca Raton: CRC Press, Inc., (1982).
6. R. W. Phillips著, 高資彬及翁秀和譯, “牙科材料學”, 第五版, 臺北:合記出版社, (1990).
7. F. Miura, K. Nakagawa, E. Masuhara: New direct bonding system for plastic brackets, Am J Orthod, 59:350, (1971).
8. Reynolds IR: A review of direct orthodontic bonding, Br Dent J, 2:171, (1975).
9. PJ. Knibbs Glass ionomer: 10 years of clinical use. J Oral Rehabil, 15:103-15, (1988).
10. DR Powis, Folleras T, Merson SA, Wilson AD. Improved adhesion of glass ionomer cement to dentin and enamel. J Dent Res, 61:1416-22, (1982).
11. EJ. Swift An update on glass ionomer cements. Quintessence Int, 19:125-30, (1988).
12. E. Mizrahi Glass ionomer cements in orthodontics: an update. Am J Orthod Dentofac Orthop, 93:505-7, (1988).
13. R Maijer, DC. Smith, A comparison between zinc phosphate and glass ionomer cement in orthodontics. Am J Orthod Dentofac Orthop, 93:273-9, (1988).
14. LW. White Glass ionomer cement. J Clin Orthod, 20:387-91, (1986).
15. DS Norris, McInnes-Ledoux P, Schwaninger B, Weinberg R. Retention of orthodontic bands with new fluoride-releasing cements. Am J Orthod89: 206-11, (1986).
16. E. H. Greener, J. K. Harcourt and E. P. Lautenschlager, Materials Science in Dentistry, Baltimore: The Williams & Wilkins Co, (1973).
17. Reynolds IR: A review of direct orthodontic bonding, Br Dent J, 2:171, (1975).
18. 郭敏光,含氟無填料Bis-GMA樹脂之氟離子釋出能力,Chinese Dental Juornal(中 華 牙 誌 ), 16(4):227-241,(1997).
19. 莊佳霖,牙科綴補用複合樹脂之研製與分析, 5-6, 碩士學位論文, 81年6月
20. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res. 8,1179, (1993).
21. K.Yano, J. Polymer Sci.: Part A212493, (1993).
22. Y. Kojima, K. Fukumori, A. Usuki, A. Okada and T. Kurauchi, J. Mater. Sci. Lett. 12,889, (1993).
23. Usuki, T. Mizutani, Y. Fukushima, M. Fujimoto, O. Kamigaito, U.S. Patent 4 889 885, (1989).
24. S.L.Rice, W.F. Balley, S.F. Wayne and J.A.Burns, Comparative in vitro Sliding-Wear Study of Conventional, Microfilled and Light-cured Composite restoratives, J. Dent. Res. 639:1173-1175, (1984).
25. K.D. Jorgensen, Restorative Resins: Abrasion vs. Mechanical Properties J. Dent. Res. 88:557-558, (1980).
26. G.Dickson, Physical and Chemical Properties of Wear, J.Dent. Res. 58:I535-I543, (1979).
27. 郭永昌, "牙用實驗性複合樹脂之機械性質" Chinese Dental Juornal(中 華 牙 誌 ), 6(4):172-181,(1987).
28. J. B. Park, "Biomaterials Science and Engineering", New York: Plenum Press, (1984).
29. W.J. O'BRIEN, "Dental Materials: Properties and Selection", Chicago: Quintessencs Publishing Co.,Inc., (1989).
30. C.D. Sirnth and D.F. Williams, "Biocompatibility of Dental Materials, Vol. IS ", Boca Raton: CRC Press, Inc., (1982).
31. Y. Mornoi, R. Asanuma, A. Kohno and K.Yanagisawa, "R Measurement of Galvanic Current and Electrical Potential in Extracted Human Teeth, J.Dent. Res. 65:1441-1444, (1986).
32. 王明光, 土壤環境礦物學, 藝軒圖書出版社, (2000).
33. S. OUJNIK, The intercalation of polar organic compounds into kaolinite, Clay Minerals, 8: 421-434, (1970).
34. 廖建勛, 納米高分子複合材料, 108, 工業材料125期, 86年5月.
35. J. Crivello, Applications of phototinitiated cationic polymerization in coatings", Journal of Coatings Technology, 63(793): 35—38, (1991).
36. R. Weerasooriya, Surface complexation modeling of fluoride adsorption onto kaolinite, Colloids and Surface A, 144:266-273, (1998).
37. R. Weerasooriya, Modeling Anion Adsorption on Kaolinite, Colloids and Surface A, Journal of Colloid and Interface Science 213:395—399, (1999).
38. D. W. Richerson, Modern ceramic engineering: properties, process, and use in design, Marcel Inc., New York, USA, (1983).
39. C. E. Inglis, Stresses ina Plate Due to the Presence of Cracks and Sharp Corners, Preceedings, Institute of Naval Architects, 60, (1993).
40. E. Orowan, Fracture Strength of Solids, in Report on Progress in Physics, Vol12, physical Society of London, U.K., (1949).
41. A. G. Evans, and G. Tappin, Effects of Microstructure on the Stress to Propagate inherent Flaws, Proc. Br. Ceram. Soc, 20:275-297, (1972).
42. A. A. Griffith, The Theory of rupture, Transactions, Royal Society of London, A-221, (1990).
43. G. R. Irwin, Analysis of stresses and Strains Near the End of a Crack Traveling a Plate, Transactions, ASME, J. Applied Mechanics, Vol 24, (1957).
44. F. Lutz, and R.W. Phillips, A classification and evaluation of composite resin systems, J Pros Dent 50: 480-488, (1983).
45. 許修銘, 牙科含氟填補材料釋氟能力之動態研究, 22-23, 碩士學位論文, 89年6月
46. Jos´e Eduardo Gardolinski, Intercalation of Benzamide into Kaolinite, Journal of Colloid and Interface Science 221:284—290, (2000).
47. E. Asmussen, Scand. J. Dent. Res., 90, 484, (1982).
48. I. E. Ruyter, Acta Odont. Scand, 40, 319, (1982).
49. J. J.Heigl, Bell, M. F. & White, J. U., Anal. Chem., 19, 193,(1947)
50. J. L. Ferracane, & E. H. Greener, J. Dent. Res., 63, 1093, (1984)
51. D.C. Watts, O.M. Amer, and E.C. Combe, Surface Hardness Development in Light-cured Composites, Dent Mater 3, 265-269, (1987).
52. Juergen Manhart, Mechanical Properties of New Composite Restorative Materials, J Biomed Mater Res (Appl Biomater) 53: 353—361, (2000).
53. Peter C. LeBaron, Polymer-layered silicate nanocomposites: an overview, Applied Clay Science, 15: 11-29, (1999).
54. RG, editor. Restorative dental materials. St. Louis: Mosby; (1997).
55. New American dental association specifications no.27 for direct filling resins. Journal of American Dental Association, 94, (1997).
56. Giannelis Emmanuel P. JOM, 3: 28, (1992)
57. Giannelis E P,中條 澄譯.フ°ラスチツケス, 46(9):25,(1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top