|
[1] R. Agarwal, C. Aggarwal, and V. Prasad. A Tree Projection Algorithm for Generation of Frequent Itemsets. Jornal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 2000. [2] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. Proceedings of ACM SIGMOD International Conference on Management of Data, pages 207–216, May 1993. [3] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB94), pages 478–499, September 1994. [4] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB94), pages 478–499, September 1994. [5] R. Agrawal and R. Srikant. Mining Sequential Patterns. Proceedings of the 11th IEEE International Conference on Data Engineering (ICDE95), pages 3–14, February 1995. [6] J. Ale and G. Rossi. An Approach to Discovering Temporal Association Rules. ACMSymposium on Applied Computing, 2000. [7] S. Aseervatham, A. Osmani, and E. Viennet. bitSPADE: A Lattice-Based Sequential Pattern Mining Algorithm Using Bitmap Representation. Proceedings of the 6th IEEE International Conference on Data Mining (ICDM06), 2006. [8] A. M. Ayad, N. M. El-Makky, and Y. Taha. Incremental Mining of Constrained Association Rules. Proceedings of the 1st SIAM Conference on Data Mining (SDM01), 2001. [9] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential PAttern Mining using A Bitmap Representation. Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 429–435, July 2002. [10] Z. J. Bai. A Parallel Algorithm for Computing the Generalized Singular Value Decomposition. Journal of Parallel and Distributed Computing, 20(3):280–288, 1994. [11] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan. Characterizing User Behavior and Network Performance in a PublicWireless Lan. Proceedings of ACM SIGMETRICS, June 2002. [12] C. Besemann and A. Denton. Integration of Profile Hidden Markov Model Output into Association Rule Mining. Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pages 538–543, 2005. [13] C. Bettini, X. Wang, and S. Jajodia. Mining Temporal Relationships with Multiple Granularities in Time Sequences. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 1998. [14] J. Blanchard, F. Guillet, R. Gras, and H. Briand. Using Information-Theoretic Measures to Assess Association Rule Interestingness. Proceedings of the 5th SIAM International Conference on Data Mining (SDM05), 2005. [15] H. Cao, N.Mamoulis, and D.W. Cheung. Mining Frequent Spatio-temporal Sequential Patterns. Proceedings of 5th IEEE International Conference on Data Mining (ICDM05), pages 82–89, November 2005. [16] C.-Y. Chang, M.-S. Chen, and C.-H. Lee. Mining General Temporal Association Rules for Items with Different Exhibition Periods. Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM02), December 2002. [17] L. Chang, T. Wang, D. Yang, and H. Luan. SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows. Proceedings of the 8th IEEE International Conference on Data Mining (ICDM08), 2008. [18] G. Chen, X. Wu, and X. Zhu. Sequential Pattern Mining in Multiple Streams. Proceedings of the 5th International Conference on Data Mining (ICDM05), pages 585–588, 2005. [19] J. Chen, H. He, G. Williams, and H. Jin. Temporal Sequence Associations for Rare Events. Proceedings of the 8th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD04), 2004. [20] M.-S. Chen, J. Han, and P. S. Yu. Data Mining: An Overview from Database Perspective. IEEE Transactions on Knowledge and Data Engineering, 5(1):866–883, Dec. 1996. [21] M.-S. Chen, J.-S. Park, and P. S. Yu. Efficient Data Mining for Path Traversal Patterns. IEEE Transactions on Knowledge and Data Engineering, 10(2):209–221, April 1998. [22] X. Chen and I. Petr. Discovering Temporal Association Rules: Algorithms, Language and System. Proceedings of the 16th IEEE International Conference on Data Engineering (ICDE00), 2000. [23] X. Chen, I. Petrounias, and H. Heathfield. Discovery of Association Rules in Temporal Databases. Proceedings of Issues and Applications of Database Technology, 1998. [24] H. Cheng, P.-N. Tan, J. Sticklen, andW. F. Punch. Recommendation viaQueryCenteredRandom Walk on K-Partite Graph. Proceedings of the 7th IEEE International Conference on DataMining (ICDM07), pages 457–462, 2007. [25] H. Cheng, X. Yan, and J. Han. IncSpan: Incremental Mining of Sequential Patterns in Large Database. Proceedings of 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 527–532, 2004. [26] J. Chilson, R. Ng, A. Wagner, and R. Zamar. Parallel Computation of High Dimensional Robust Correlation and Covariance Matrices. Proceedings of 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 533–538, August 2004. [27] E. Cohen, M. Datary, S. Fujiwaraz, A. Gionisx, P. Indyk, R. Motwanik, J. D. Ullman, and C. Yangyy. Finding Interesting Associations without Support Pruning. IEEE Transactions on Knowledge and Data Engineering, pages 64–78, 2001. [28] S. Cong, J. Han, and D. Padua. Parallel Mining of Closed Sequential Patterns. Proceedings of 11st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 562–567, August 2005. [29] J. Dean and S. Ghemawat. MapReduce: Simplified DataProcessing on Large Clusters. Symposium on Operating System Design and Implementation, 2004. [30] I. Dhillon and D.Modha. A Data-clustering Algorithm on DistributedMemoryMultiprocessors. Proceedings of the ACM SIGKDD Workshop on High Performance Knowledge Discovery, pages 245–260, 1999. [31] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurasamy. Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge, MA, 1996. [32] M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. Proceedings of the 25th International Conference on Very Large Data Bases (VLDB99), pages 223–234, 1999. [33] B. Goethals, W. L. Page, and H. Mannila. Mining Association Rules of Simple Conjunctive Queries. Proceedings of the 8th SIAM International Conference on Data Mining (SDM08), 2008. [34] J.-K. Guo, B.-J. Ruan, and Y.-Y. Zhu. A Top-down Algorithm for Web Log Sequential Pattern Mining. Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD05), 2005. [35] Hadoop. http://hadoop.apache.org. [36] J. Han and Y. Fu. Discovery of Multiple-Level Association Rules from Large Databases. Proceedings of the 21st International Conference on Very Large Data Bases (VLDB95), pages 420– 431, September 1995. [37] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000. [38] J. Han and J. Pei. Mining Frequent Patterns by Pattern-Growth: Methodology and Implications. ACM SIGKDD Explorations (Special Issue on Scaleble Data Mining Algorithms), December 2000. [39] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. FreeSpan: Frequent Pattern-projected Sequential Pattern Mining. Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 355–359, August 2000. [40] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu. FreeSpan: Frequent Pattern-projected Sequential Pattern Mining. Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 355–359, 2000. [41] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. Proceedings of ACMSIGMOD International Conference onManagement of Data, pages 486–493,May 2000. [42] S. K. Harms and J. S. Deogun. Sequential Association Rule Mining with Time Lags. Journal of Intelligent Informatics Systems, 2004. [43] Y. Hirate and H. Yamana. Sequential Pattern Mining with Time Interval. Proceedings of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD06), pages 775–779, 2006. [44] C.-C. Ho, H.-F. Li, F.-F. Kuo, and S.-Y. Lee. Incremental Mining of Sequential Patterns over a Stream Sliding Window. Proceedings of IEEE International Workshop on Mining Evolving and Streaming Data (IWMESD06), December 2006. [45] J.-W. Huang, C.-Y. Tseng, J.-C. Ou, and M.-S. Chen. A General Model for Sequential Pattern Mining with a Progressive Database. IEEE Transactions on Knowledge and Data Engineering, 20(9):1153–1167, 2008. [46] A. Inokuchi and T. Washio. A Fast Method to Mine Frequent Subsequences from Graph Sequence Data. Proceedings of the 8th IEEE International Conference on Data Mining (ICDM08), 2008. [47] W. L. D. IV, P. Schwarz, and E. Terzi. Finding Representative Association Rules from Large Rule Collections. Proceedings of the 9th SIAM International Conference on Data Mining (SDM09), 2009. [48] N. Jiang and L. Gruenwald. An Efficient Algorithm to Mine Online Data Streams. Proceedings of 2006 ACM SIGKDD Workshop on Theory and Practice of Temporal Data Mining, 2006. [49] C. Jones, J. Hall, and J. Hale. Secure Distributed Database Mining: Principles of Design. Advances in Distributed and Parallel Knowledge Discovery, pages 277–294, 2000. [50] H. Kargupta, K. Das, and K. Liu. Multi-Party, Privacy-Preserving Distributed DataMining using a Game Theoretic Framework. In Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD07), pages 523–531, 2007. [51] KDDCUP07. http://www.cs.uic.edu/ liub/netflix-kdd-cup-2007.html. [52] Y. Ke, J. Cheng, andW. Ng. MIC Framework: An Information-Theoretic Approach to Quantitative Association Rule Mining. Proceedings of the 22nd IEEE International Conference on Data Engineering (ICDE06), 2006. [53] D. Kifer, C. Bucila, J. Gehrke, and W. White. DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints. Proceedings of the 8th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, 2002. [54] L. Lakshmanan, R. Ng, J. Han, and A. Pang. Exploratory Mining and Pruning Optimization of Constrained Associations Rules. Proceedings of ACM SIGMOD International Conference on Management of Data, 1998. [55] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang. Optimization of Constrained Frequent Set Queries with 2-Variable Constraints. Proceedings of ACM SIGMOD International Conference on Management of Data, pages 157–168, June 1999. [56] C.-H. Lee, C.-R. Lin, and M.-S. Chen. On Mining General Temporal Association Rules in a Publication Database. Proceedings of the 1st IEEE International Conference on Data Mining (ICDM01), November 2001. [57] C.-H. Lee, C.-R. Lin, and M.-S. Chen. Sliding-Window Filtering: An Efficient Algorithm for IncrementalMining. Proceedings of the 10th ACMInternational Conference on Information and Knowledge Management (CIKM01), November 2001. [58] D. G. Lee. Coactive Learning for Distributed Data Mining. Proceedings of the 4th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, pages 209–213, 1998. [59] C. K.-S. Leung, M. A. F. Mateo, and D. A. Brajczuk. A Tree-Based Approach for Frequent Pattern Mining from Uncertain Data. Proceedings of the 12th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD08), 2008. [60] C. Li and J. Wang. Efficiently Mining Closed Subsequences with Gap Constraints. Proceedings of the 8th SIAM International Conference on Data Mining (SDM08), 2008. [61] C.-R. Lin, C.-H. Yun, and M.-S. Chen. Utilizing Slice Scan and Selective Hash for Episode Mining. Proceedings of 2001 ACM SIGKDD Workshop on Theory and Practice of Temporal Data Mining, August 2001. [62] J.-L. Lin and M. Dunham. Mining Association Rules: Anti-Skew Algorithms. Proceedings of the 14th IEEE International Conference on Data Engineering (ICDE98), pages 486–493, 1998. [63] M.-Y. Lin and S.-Y. Lee. Incremental Update on Sequential Patterns in Large Databases by Implicit Merging and Efficient Counting. Information System, 29(5):385–404, July 2004. [64] B. Liu, W. Hsu, and Y. Ma. Mining Association Rules with Multiple Minimum Supports. Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 1999. [65] D. Lo, S.-C. Khoo, , and J. Li. Mining and Ranking Generators of Sequential Patterns. Proceedings of the 8th SIAM International Conference on Data Mining (SDM08), 2008. [66] C. Luo and S. M. Chung. Efficient Mining of Maximal Sequential Patterns Using Multiple Samples. Proceedings of the 5th SIAM International Conference on Data Mining (SDM05), 2005. [67] P. Luo, H. Xiong, K. Lu, and Z. Shi. Distributed Classification in Peer-to-peer Networks. Proceedings of the 13th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, pages 968–976, 2007. [68] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997. [69] A. Marascu and F. Masseglia. Mining Sequential Patterns from Temporal Streaming Data. Proceedings of the 1st ECML/PKDD Workshop on Mining Spatio-Temporal Data (MSTD05), October 2005. [70] A. Marascu and F. Masseglia. Mining Sequential Patterns from Data Streams: a Centroid Approach. Journal of Intelligent Information Systems, 27(3):291–307, November 2006. [71] F. Masseglia, P. Poncelet, and M. Teisseire. Incremental Mining of Sequential Patterns in Large Databases. Data and Knowledge Engineering, 46:97–121, July 2003. [72] B. Mozafari, H. Thakkar, and C. Zaniolo. Verifying and Mining Frequent Patterns from Large Windows over Data Streams. Proceedings of the 24th IEEE International Conference on Data Engineering (ICDE08), 2008. [73] A. Mueller. Fast Sequential and Parallel Algorithms for Association Rule Mining: A Comparison. Technical Report CS-TR-3515, Dept. of Computer Science, Univ. of Maryland, College Park, MD, 1995. [74] B. G. J. Muhonen and H. Toivonen. Mining Non-Derivable Association Rules. Proceedings of the 5th SIAM International Conference on Data Mining (SDM05), 2005. [75] R. Ng and J. Han. Efficient and Effective ClusteringMethods for Spatial Data Mining. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB94), pages 144–155, September 1994. [76] S. Nguyen, X. Sun, andM. Orlowska. Improvements of IncSpan: IncrementalMining of Sequential Patterns in Large Database. Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD05), 2005. [77] J.-Z. Ouh, P. Wu, and M.-S. Chen. Constrained Based Sequential Pattern Mining. Proceedings of International Workshop on Web Technology, December 2001. [78] A. B. Pandey, J. Srivastava, and S. Shekhar. Web Proxy Server with Intelligent Prefetcher for Dynamic Pages Using Association Rules. University of Minnesota Technical Report Number: 01-004, January 2001. [79] A. B. Pandey, R. R. Vatsavai, X. Ma, J. Srivastava, and S. Shekhar. Data Mining for Intelligent Web Prefetching. Proceedings of the Workshop on Mining Data Across Multiple Customer Touchpoints for CRM (MDCRM02), May 2002. [80] J.-S. Park, M.-S. Chen, and P. S. Yu. Using a Hash-Based Method with Transaction Trimming for Mining Association Rules. IEEE Transactions on Knowledge and Data Engineering, 9(5): 813–825, October 1997. [81] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas. Incremental and Interactive SequenceMining. Proceedings of the 8th International Conference on Information and Knowledge Management (CIKM99), pages 251–258, 1999. [82] J. Pei and J. Han. Can We Push More Constraints into Frequent Pattern Mining? Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2000. [83] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proceedings of the 17th IEEE International Conference on Data Engineering (ICDE01), 2001. [84] J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-projected Pattern Growth. Proceedings of the 17th IEEE International Conference on Data Engineering (ICDE01), pages 215–224, 2001. [85] J. Pei, J. Han, and W. Wang. Mining Sequential Patterns with Constraints in Large Databases. Proceedings of the 11th ACM International Conference in Information and Knowledge Management (CIKM02), 2002. [86] X.-H. Phan, L.-M. Nguyen, T.-B. Ho, and S. Horiguchi. Improving Discriminative Sequential Learning with Rare-but-Important Associations. Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005. [87] C. Raissi, P. Poncelet, and M. Teisseire. SPEED: Mining Maximal Sequential Patterns over Data. Proceedings of the 3rd IEEE International Conference Intelligent Systems (IS06), pages 546–552, 2006. [88] C. Romero, S. Ventura, J. A. Delgado, and P. D. Bra. Personalized Links Recommendation Based on Data Mining. In Adaptive Educational Hypermedia Systems. Proceedings of the 2nd European Conference on Technology Enhanced Learning, September 2007. [89] A. Savasere, E. Omiecinski, and S. Navathe. An Efficient Algorithm for Mining Association Rules in Large Databases. Proceedings of the 21st International Conference on Very Large Data Bases (VLDB95), pages 432–444, September 1995. [90] B. W. Scotney, S. I. McClean, and M. C. Rodgers. Optimal and Efficient Integration of Heterogeneous Summary Tables in a Distributed Database. Data and Knowledge Engineering, 29(3): 337–350, 1999. [91] J. Soo, M.-S. Chen, and P. S. Yu. Efficient Parallel Data Mining for Association Rules. Proceedings of the 4th ACM International Conference on Information and Knowledge Management (CIKM95), pages 31–36, November 1995. [92] R. Srikant and R. Agrawal. Mining Generalized Association Rules. Proceedings of the 21st International Conference on Very Large Data Bases (VLDB95), pages 407–419, September 1995. [93] R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large Relational Tables. Proceedings of ACM SIGMOD International Conference on Management of Data, 1996. [94] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Performance Improvements. Proceedings of the 5th International Conference on Extending Database Technology (EDBT96), March 1996. [95] M. Steinbach, P.-N. Tan, and V. Kumar. Support Envelopes: A Technique for Exploring the Structure of Association Patterns. Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005. [96] Szymon and Jaroszewicz. Polynomial Association Rules with Applications to Logistic Regression. Proceedings of the 11st ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2006. [97] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee. CP-tree: A Tree Structure for Single- Pass Frequent Pattern Mining. Proceedings of the 12th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD08), 2008. [98] A. Tansel and N. Ayan. Discovery of Association Rules in Temporal Databases. Proceedings of AAAI on Knowledge Discovery in Databases, 1998. [99] H. Toivonen. Sampling Large Databases for Association Rules. Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB96), pages 134–145, September 1996. [100] H. Wang, X. Zhang, and G. Chen. Mining a Complete Set of Both Positive and Negative Association Rules from Large Databases. Proceedings of the 12th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD08), 2008. [101] J. Wang and J. Han. BIDE: Efficient Mining of Frequent Closed Sequences. Proceedings of the 20th IEEE International Conference on Data Engineering (ICDE04), pages 79–91, 2004. [102] K. Wang, Y. He, and J. Han. Mining Frequent Itemsets Using Support Constraints. Proceedings of the 26th International Conference on Very Large Data Bases (VLDB00), September 2000. [103] K. Wang, Y. Xu, and J. X. Yu. Scalable Sequential Pattern Mining for Biological Sequences. Proceedings of the 13th ACM International Conference on Information and Knowledge Management (CIKM04), pages 178–187, November 2004. [104] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: A Structural Clustering Algorithm for Networks. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 824–833, 2007. [105] X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. Proceedings of the 3rd SIAM International Conference on Data Mining (SDM03), pages 166– 177, May 2003. [106] C. Yang, U. Fayyad, and P. Bradley. Efficient Discovery of Error-Tolerant Frequent Itemsets in High Dimensions. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2001. [107] Q. Yang and H. H. Zhang. Web-log Mining for Predictive Web Caching. IEEE Transaction on Knowledge and Data Engineering, 15(4):1050–1053, July 2003. [108] Q. Yang, H. H. Zhang, and T. Li. Mining Web Logs for Prediction Models in WWW Caching and Prefetching. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 473–478, August 2001. [109] S.-J. Yen. The Studies ofMining Frequent Patterns Based on Frequent Pattern Tree. Proceedings of the 13th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD09), 2009. [110] D. Yuan, K. Lee, H. Cheng, G. Krishna, Z. Li, X.Ma, Y. Zhou, and J. Han. CISpan: Comprehensive Incremental Mining Algorithms of Closed Sequential Patterns for Multi-versional Software Mining. Proceedings of the 8th SIAMInternational Conference on DataMining (SDM08), 2008. [111] M. Zaki. Efficient enumeration of frequent sequences. Proceedings of the 7th International Conference on Information and Knowledge Management (CIKM98), November 1998. [112] M. Zhang, B. Kao, D.W.-L. Cheung, and C. L. Yip. Efficient Algorithms for Incremental Update of Frequent Sequences. Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD02), pages 186–197, 2002. [113] Q. Zhang, J. Liu, andW.Wang. Approximate Clustering on Distributed Data Streams. Proceedings of the 24th IEEE International Conference on Data Engineering (ICDE07), pages 1131– 1139, 2008.
|