中文部分
王驥魁、朱宏杰、林志交、曾義星(2012)。全波形光達與高光譜影像融合於地物分類應用。行政院災害防救應用科技方案暨國家災害防救科技中心成果聯合發表會(編號﹕66),內政部地政司。
林俊宏(譯)(2014a)。大數據:教育篇:教學與學習的未來趨勢(原作者:Viktor Mayer-Schönberger,Kenneth Cukier)。臺北市:天下文化。(原著出版年:2014)
林俊宏(譯)(2014b)。大數據(原作者:Viktor Mayer-Schönberger,Kenneth Cukier)。臺北市:天下文化。(原著出版年:2014)
林建智(2002)。基因演算法與類神經網路整合應用之探討-以流程式工廠訂單排程為例(未出版之碩士論文)。國立台灣科技大學,臺北市。林楨家(1999)。都市計畫草圖替選方案分析模式(未出版之博士論文)。國立交通大學,新竹市。施明倫、林唐煌、洪志豪、蔡廣叡(2013)。可攜式高光譜影像儀應用於遙測空氣品質指標。航測及遙測學刊,4(16),229-243。張光佑(2005)。探討特徵萃取要素於小樣本分類問題(未出版之碩士論文)。國立臺中教育大學,臺中市。張偉民(2012)。一個基於相關矩陣之特徵萃取法(未出版之碩士論文)。國立臺中教育大學,臺中市。陳天來、陳用佛(2014)。以高光譜影像分析紅色印泥之評估。2014 年鑑識科學研討會,桃園縣中央警察大學。
陳柏榮(2002)。以限制規劃程式構建投資組合決策支援系統之研究(未出版之碩士論文)。國立交通大學,新竹市。博士論文)。國立中央大學,桃園縣。
黃乙哲(2009)。紋理特徵分析用於偵測乳房攝影微小鈣化群(未出版之碩士論文)。中國醫藥大學,臺中市。黃承龍、陳穆臻、王界人(2004)。支援向量機於信用評等之應用。計量管理期刊,1(2),155-172。
黃福居(2001)。全三維軸流風扇的葉片最佳化設計(未出版之碩士論文)。國立成功大學,台南市。葉育惠、鐘偉菖、廖睿瑜、鍾嘉綾、郭彥甫、林達德(2014)。高光譜與多光譜影像技術應用於植物病害檢測之研究。2014年科技部生科司農業環境科學學門成果發表會(編號﹕C-O2),國立中興大學。
詹正維、廖學華、郭伯臣、紀明宏(2005)。高維度資料辨識系統。台灣地理資訊學會年會暨學術研討會,臺中市:逢甲大學。
蔡爾逸(2012)。應用支撐向量機(SVM)於都市不動產價格預測之研究(未出版之
鄭俊彥(2011)。大學微積分電腦化建構反應題及自動分析機制研發(未出版之碩士論文)。國立臺中教育大學,臺中市。簡卉伶(2008)。中文郵件過濾系統特徵選取之效度探討(未出版之碩士論文)。東吳大學,臺北市。英文部分
Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository, from http://archive.ics.uci.edu/ml/
Benediktsson, J. A., Palmason, A. J. & Sveinsson, J. R. (2005). Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 55, 229-243.
Benediktsson, J. A., Palmason, A. J., & Sveinsson, J. R. (2005). Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Transactions on Geoscience and Remote Sensing, 55, 229-243.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152.
Bruzzone, L., & Persello, C. (2009). A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2142-2154.
Camps, V. G., & Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1351-1362.
Camps-Valls, G., Gomez-Chova, L., Calpe, J., Soria, E., Martín, J. D., Alonso, L., & Moreno, J. (2004). Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1530-1542.
Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., & Calpe-Maravilla, J. (2006). Composite kernels for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing Letters, 3(1), 93-97.
Cariou, C., Chehdi, K., & Moan, S. L. (2011). BandClust: an unsupervised band reduction method for hyperspectral remote sensing. IEEE Geoscience and Remote Sensing Letters, 8(3), 565-569.
Chang, C. C., & Lin, C. J. (2001). LIBSVM: A Library for Support Vector Machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chang, C. I., Wu, C. C., Liu, W. M., & Ouyang, Y. C. (2006). A new growing method for simplex-based endmember extraction algorithm. IEEE Transactions on Geoscience and Remote Sensing, 44(10), 2804-2819.
Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46, 131-159.
Chen, Y. W. & Lin, C. J. (2006). Combining SVMs with various feature selection strategies. Available from http://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf.
Conn, A. R., Gould, N. I. M., & Toint, Ph. L. (1991). A Globally Convergent Augmented Lagrangian Algorithm for Optimization with General Constraints and Simple Bounds. SIAM Journal on Numerical Analysis, 28(2), 545-572.
Conn, A. R., Gould, N. I. M., & Toint, Ph. L. (1997). A Globally Convergent Augmented Lagrangian Barrier Algorithm for Optimization with General Inequality Constraints and Simple Bounds. Mathematics of Computation, 66(217), 261-288.
Dell’Acqua, F., Gamba, P., & Ferrari, A. (2003). Exploiting spectral and spatial information for classifying hyperspectral data in urban areas. Proceedings of IGARSS, 1, 464-466. Toulouse, France.
Dhir, C. S., Iqbal, N., & Lee, S. C. (2007). Efficient feature selection based on information gain criterion for face recognition. Proceedings of the 2007 International Conference on Information Acquisition, Jeju City, Korea.
Fauvel, M., Chanussot, J., & Benediktsson, J. A. (2006). Evaluation of kernels for multiclass classification of hyperspectral remote sensing data. In Proc. ICASSP, II-813–II-816.
Fauvel, M., Chanussot, J., & Benediktsson, J. A. (2006). Kernel Principal Component Analysis for Feature Reduction in Hyperspectrale Images Analysis. Proceedings of the Nordic Signal Processing Symposium, 7, 238-241.
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization & Machine Learning. Boston:Addison-Wesley
Holland, J. H. (1992). Adaptation in Natural and Artificial System (2th Ed). Cambridge, MA: MIT Press.
Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55-63.
Jia, X., & Richards, J. A. (1994). Efficient maximum likelihood classification for imaging spectrometer data sets. IEEE Transactions on Geoscience and Remote Sensing, 32, 274-281.
Kuncheva, L. I. & Vetrov, D. P. (2006). Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11), 1798-1808.
Kuo, B. C., & Chang, K. Y. (2007). Feature extractions for small sample size classification problem. IEEE Transactions on Geoscience and Remote Sensing, 45(3), 756-764.
Kuo, B. C., Li, C. H., & Yang, J. M. (2009). Kernel nonparametric weighted feature extraction for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 47(4), 1139-1155.
Kwon, H., & Gurram, P. (2010). Optimal kernel bandwidth estimation for hyperspectral kernel-based anomaly detection. Proceedings of International Geosciences and Remote Sensing Symposium (IGARSS), 2812-2815.
Landgrebe, D. A. (2003). Signal Theory Methods in Multispectral Remote Sensing. John Wiley and Sons, Hoboken, NJ: Chichester.
Li, C. H., Ho, H. H., Liu, Y. L. Lin, C. T., Kuo, B. C., & Taur, J. S. (2012). An automatic method for selecting the parameter of the normalized kernel function to support vector machines. Journal of Information Science and Engineering, 28(1), 1-15.
Li, C. H., Lin, C. T., Kuo, B. C., & Chu, H. S. (2010). An automatic method for selecting the parameter of the RBF kernel function to support vector machines. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 836-839.
Liu, H. M. (1998). Feature Selection for Knowledge Discovery and DataMining. Boston: Kluwer Academic Publishers.
Manolakis, D., Marden, D., & Shaw, G. A. (2003). Hyperspectral Image Processing for Automatic Target Detection Applications. LINCOLN LABORATORY JOURNAL, 14(1), 79-116.
Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790.
Schölkopf, B., & Smola, A. J. (2001). Learning with Kernels. MIT Press, Cambridge, MA.
Shawe-Taylor, J., & Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press, New York, NY.
Vapnik, V. N. (2001). The Nature of Statistical Learning Theory (2th ed.). New York: Springer-Verlag.
Xu, Y., Liu, J., Hu, Q., Chen, Z., Du, X., & Heng, P. A. (2008). F-score Feature Selection Method May Improve Texture-based Liver Segmentation Strategies. Proceedings of 2008 IEEE International Symposium on IT in Medicine and Education, 697-702.
Yu, S. & Guan, L. (2000). A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Transactions Medical Imaging, 19(2), 115-126.
McKinney, D. C. & Lin, M. D. (1994). Genetic Algorithm Solution of Groundwater Management Models. Water Resources Res, 30(6), 1897-1906.
Chen, Y. M. (1997). Management of Water Resources Using Improved Genetic Algorithms. Computers and electronics in agriculture, 18, 117-127.
Harrouni, K. EI., Ouazar, D., Walters, G. A., & Cheng, A. H.-D. (1997).Groundwater Optimization and Parameter Estimation by Genetic Algorithm and Dual Reciprocity Boundary Element Method. Engineering Analysis with Boundary Elements, 18(4), 287-296.
Haupt, R. L. & Haupt. S. E. (1998). Practical genetic algorithms. New York : Wiley.
Garrard, A. & Fraga, E. S. (1998). Mass exchange network synthesis using genetic algorithms. Computers & Chemical Engineering, 22(12), 1837-1850.