跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱暉
研究生(外文):Yu-Hui Chen
論文名稱:WIDE AWAKE調節雄果蠅同性間求偶行為
論文名稱(外文):WIDE AWAKE modulates male-male courtship in Drosophila
指導教授:傅在峰蔡玉真蔡玉真引用關係
指導教授(外文):Tasi-Feng FuYu-Chen Tsai
口試委員:張純純
口試委員(外文):C-C Jang
口試日期:2015-12-07
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:43
中文關鍵詞:果蠅同性求偶行為WAKEGABA接受器
外文關鍵詞:Drosophilahomosexual courtshipWAKEGABA receptor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
求偶行為是動物的自然本能,動物透過許多感官線索辨識同種類且合適的對象進而繁衍後代,這些自然的本能通常發生在異性之間,但在許多的物種也發現同性間的求偶行為,這其中所涉及的細胞及分子機制仍未被清楚釐清。在本研究中我們證實WIDE AWAKE (WAKE)在成年的雄果蠅神經系統中參與抑制雄果蠅同性間求偶行為的發生。wake突變所引起的雄果蠅同性間求偶行為必需同時在追求者(courter)與被追求者(courtee) wake基因功能缺陷時才會發生,當任一方是突變基因的異型合子(heterozygous)時,這種行為將被抑制發生。利用RU486誘導wake dsRNAi大量表現在神經系統中,藉以下調WAKE的表現也同樣可以看到雄果蠅同性間求偶行為的發生。有趣的是,我們也初步證實WAKE可能是透過調節GABAA receptor Resistant to Dieldrin (Rdl)的表現量來抑制雄果蠅同性間的求偶行為。這些證據顯示WAKE在神經系統中參與調節雄果蠅同性間求偶行為的發生,進一步了解WAKE在脊椎動物中對男同性戀行為的影響是一個有趣的方向。
Animals present several sensory cues to identify the same species and suitable partner for reproduction. Courtship, an instinct of animals in the nature, normally occurs in between opposite sexes. Interestingly, a lot of researches proved that courtship and sexual behaviors existed between the same sexes in many species, but the cellular or molecular mechanism is not clear. In this study, I demonstrate the existence of functional WIDE AWAKE (WAKE) and their acute requirement for inhibiting inter-male courtship in the neuronal system of adult Drosophila. I showed that hypomorphic mutants of the essential wake gene on both partners cause male-male courtship behavior, and can be rescued in either the wake heterozygous courter, or the courtee. Consistently, the knocking down of WAKE by expressing UAS-RNAiwake under an RU486-inducible pan-neuronal driver (elav-GeneSwitch) also caused inter-male courtship behavior. Interestingly, the WAKE may modulate the GABAA receptor Resistant to Dieldrin (Rdl) levels for inhibiting male-to-male courtship. These data explicitly demonstrate the involvement of wake in Drosophila inter-male courtship behavior and may lead to important advances in the understanding in vertebrates.
目次
誌謝 I
摘要 II
Abstract III
目次 IV
圖目次 V
表目次 VI
第1章 研究背景(Background) 1
第1節 果蠅模式動物 1
第2節 果蠅的求偶行為 1
第3節 wake基因 5
第2章 研究目的(Specific Aims) 14
第3章 材料與方法(Materials and Methods) 15
第1節 果蠅品系與培養條件 15
第2節 果蠅求偶行為 16
第2.1節 果蠅求偶觀測盤設計與記錄 16
第2.2節 果蠅間求偶行為分析 17
第2.3節 鏈型雄果蠅求偶行為分析 18
第3節 藥物誘導調控dsRNAi表現於果蠅成蟲階段的神經系統 18
第4節 果蠅活動力分析 18
第5節 果蠅體表碳氫化合物分析 19
第5.1節 果蠅體表碳氫化合物萃取 19
第5.2節 氣相色譜質譜分析 19
第4章 結果(Results) 21
第1節 dWAKE調控雄果蠅的同性間求偶行為 21
第2節 dWAKE在神經系統中調控雄果蠅的同性間求偶行為 24
第3節 dWAKE在神經系統中可能經由RDL調控雄果蠅同性間的求偶行為 27
第4節 dWAKE可調節雄果蠅體表碳氫化合物的組成 30
第5章 討論(Discussion) 35
參考文獻(References) 40

Andrews, J.C., Fernandez, M.P., Yu, Q., Leary, G.P., Leung, A.K., Kavanaugh, M.P., Kravitz, E.A., and Certel, S.J. (2014). Octopamine neuromodulation regulates Gr32a-linked aggression and courtship pathways in Drosophila males. PLoS genetics 10, e1004356.
Benton, R. (2011). Decision making: singin' in the brain. Neuron 69, 399-401.
Billeter, J.C., Atallah, J., Krupp, J.J., Millar, J.G., and Levine, J.D. (2009). Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461, 987-991.
Bray, S., and Amrein, H. (2003). A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39, 1019-1029.
Butterworth, F.M. (1969). Lipids of Drosophila: a newly detected lipid in the male. Science 163, 1356-1357.
Chamero, P., Marton, T.F., Logan, D.W., Flanagan, K., Cruz, J.R., Saghatelian, A., Cravatt, B.F., and Stowers, L. (2007). Identification of protein pheromones that promote aggressive behaviour. Nature 450, 899-902.
Clyne, J.D., and Miesenbock, G. (2008). Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354-363.
Demir, E., and Dickson, B.J. (2005). fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785-794.
Diao, F., Ironfield, H., Luan, H., Diao, F., Shropshire, W.C., Ewer, J., Marr, E., Potter, C.J., Landgraf, M., and White, B.H. (2015). Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. Cell reports 10, 1410-1421.
Dweck, H.K., Ebrahim, S.A., Thoma, M., Mohamed, A.A., Keesey, I.W., Trona, F., Lavista-Llanos, S., Svatos, A., Sachse, S., Knaden, M., et al. (2015). Pheromones mediating copulation and attraction in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 112, E2829-2835.
Ejima, A., and Griffith, L.C. (2008). Courtship initiation is stimulated by acoustic signals in Drosophila melanogaster. PloS one 3, e3246.
Everaerts, C., Farine, J.P., Cobb, M., and Ferveur, J.F. (2010). Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PloS one 5, e9607.
Fan, P., Manoli, D.S., Ahmed, O.M., Chen, Y., Agarwal, N., Kwong, S., Cai, A.G., Neitz, J., Renslo, A., Baker, B.S., et al. (2013). Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154, 89-102.
Finley, K.D., Taylor, B.J., Milstein, M., and McKeown, M. (1997). dissatisfaction, a gene involved in sex-specific behavior and neural development of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 94, 913-918.
Fujii, S., and Amrein, H. (2010). Ventral lateral and DN1 clock neurons mediate distinct properties of male sex drive rhythm in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 107, 10590-10595.
Fujii, S., Krishnan, P., Hardin, P., and Amrein, H. (2007). Nocturnal male sex drive in Drosophila. Current biology : CB 17, 244-251.
Gaines, P., Tompkins, L., Woodard, C.T., and Carlson, J.R. (2000). quick-to-court, a Drosophila mutant with elevated levels of sexual behavior, is defective in a predicted coiled-coil protein. Genetics 154, 1627-1637.
Hall, J.C. (1994). The mating of a fly. Science 264, 1702-1714.
Hamasaka, Y., Suzuki, T., Hanai, S., and Ishida, N. (2010). Evening circadian oscillator as the primary determinant of rhythmic motivation for Drosophila courtship behavior. Genes to cells : devoted to molecular & cellular mechanisms 15, 1240-1248.
Heinrichs, V., Ryner, L.C., and Baker, B.S. (1998). Regulation of sex-specific selection of fruitless 5' splice sites by transformer and transformer-2. Molecular and cellular biology 18, 450-458.
Hu, Y., Han, Y., Shao, Y., Wang, X., Ma, Y., Ling, E., and Xue, L. (2015). Gr33a modulates Drosophila male courtship preference. Scientific reports 5, 7777.
Kadener, S., Villella, A., Kula, E., Palm, K., Pyza, E., Botas, J., Hall, J.C., and Rosbash, M. (2006). Neurotoxic protein expression reveals connections between the circadian clock and mating behavior in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 103, 13537-13542.
Kaun, K.R., Azanchi, R., Maung, Z., Hirsh, J., and Heberlein, U. (2011). A Drosophila model for alcohol reward. Nature neuroscience 14, 612-619.
Koganezawa, M., Haba, D., Matsuo, T., and Yamamoto, D. (2010). The shaping of male courtship posture by lateralized gustatory inputs to male-specific interneurons. Current biology : CB 20, 1-8.
Kohatsu, S., Koganezawa, M., and Yamamoto, D. (2011). Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69, 498-508.
Kuo, S.Y., Wu, C.L., Hsieh, M.Y., Lin, C.T., Wen, R.K., Chen, L.C., Chen, Y.H., Yu, Y.W., Wang, H.D., Su, Y.J., et al. (2015). PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine. Nature communications 6, 7490.
Kyriacou, C.P., and Hall, J.C. (1980). Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Proceedings of the National Academy of Sciences of the United States of America 77, 6729-6733.
Lacaille, F., Hiroi, M., Twele, R., Inoshita, T., Umemoto, D., Maniere, G., Marion-Poll, F., Ozaki, M., Francke, W., Cobb, M., et al. (2007). An inhibitory sex pheromone tastes bitter for Drosophila males. PloS one 2, e661.
Lam, B.J., Bakshi, A., Ekinci, F.Y., Webb, J., Graveley, B.R., and Hertel, K.J. (2003). Enhancer-dependent 5'-splice site control of fruitless pre-mRNA splicing. The Journal of biological chemistry 278, 22740-22747.
Lin, H., Mann, K.J., Starostina, E., Kinser, R.D., and Pikielny, C.W. (2005). A Drosophila DEG/ENaC channel subunit is required for male response to female pheromones. Proceedings of the National Academy of Sciences of the United States of America 102, 12831-12836.
Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G.J., Kennerdell, J.R., Zhu, Y., Wang, L.S., and Bonini, N.M. (2012a). The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482, 519-523.
Liu, S., Lamaze, A., Liu, Q., Tabuchi, M., Yang, Y., Fowler, M., Bharadwaj, R., Zhang, J., Bedont, J., Blackshaw, S., et al. (2014). WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 82, 151-166.
Liu, T., Starostina, E., Vijayan, V., and Pikielny, C.W. (2012b). Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 11879-11889.
Lu, B., LaMora, A., Sun, Y., Welsh, M.J., and Ben-Shahar, Y. (2012). ppk23-Dependent chemosensory functions contribute to courtship behavior in Drosophila melanogaster. PLoS genetics 8, e1002587.
Medina, I., Casal, J., and Fabre, C.C. (2015). Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship? Biology open 4, 1549-1557.
Mignot, E., and Takahashi, J.S. (2007). A circadian sleep disorder reveals a complex clock. Cell 128, 22-23.
Miyamoto, T., and Amrein, H. (2008). Suppression of male courtship by a Drosophila pheromone receptor. Nature neuroscience 11, 874-876.
Moon, S.J., Lee, Y., Jiao, Y., and Montell, C. (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Current biology : CB 19, 1623-1627.
Nojima, T., Kimura, K., Koganezawa, M., and Yamamoto, D. (2010). Neuronal synaptic outputs determine the sexual fate of postsynaptic targets. Current biology : CB 20, 836-840.
Osterwalder, T., Yoon, K.S., White, B.H., and Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proceedings of the National Academy of Sciences of the United States of America 98, 12596-12601.
Pan, Y., Meissner, G.W., and Baker, B.S. (2012). Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proceedings of the National Academy of Sciences of the United States of America 109, 10065-10070.
Pan, Y., Robinett, C.C., and Baker, B.S. (2011). Turning males on: activation of male courtship behavior in Drosophila melanogaster. PloS one 6, e21144.
Ryner, L.C., Goodwin, S.F., Castrillon, D.H., Anand, A., Villella, A., Baker, B.S., Hall, J.C., Taylor, B.J., and Wasserman, S.A. (1996). Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079-1089.
Starostina, E., Liu, T., Vijayan, V., Zheng, Z., Siwicki, K.K., and Pikielny, C.W. (2012). A Drosophila DEG/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 4665-4674.
Tachibana, S., Touhara, K., and Ejima, A. (2015). Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster. PloS one 10, e0135186.
Teran, R., Bonilla, E., Medina-Leendertz, S., Mora, M., Villalobos, V., Paz, M., and Arcaya, J.L. (2012). The life span of Drosophila melanogaster is affected by melatonin and thioctic acid. Investigacion clinica 53, 250-261.
Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L., and Scott, K. (2012). Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149, 1140-1151.
Toda, H., Zhao, X., and Dickson, B.J. (2012). The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. Cell reports 1, 599-607.
Watanabe, K., Toba, G., Koganezawa, M., and Yamamoto, D. (2011). Gr39a, a highly diversified gustatory receptor in Drosophila, has a role in sexual behavior. Behavior genetics 41, 746-753.
Wu, C.L., Xia, S., Fu, T.F., Wang, H., Chen, Y.H., Leong, D., Chiang, A.S., and Tully, T. (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nature neuroscience 10, 1578-1586.
Yamamoto, D., and Koganezawa, M. (2013). Genes and circuits of courtship behaviour in Drosophila males. Nature reviews Neuroscience 14, 681-692.
Yuan, Q., Song, Y., Yang, C.H., Jan, L.Y., and Jan, Y.N. (2014). Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nature neuroscience 17, 81-88.
Zhang, S., Ross, K.D., Seidner, G.A., Gorman, M.R., Poon, T.H., Wang, X., Keithley, E.M., Lee, P.N., Martindale, M.Q., Joiner, W.J., et al. (2015). Nmf9 Encodes a Highly Conserved Protein Important to Neurological Function in Mice and Flies. PLoS genetics 11, e1005344.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top