跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊淑娟
研究生(外文):Shu-Juan Yang
論文名稱:下視丘弓狀核的傳入路徑:結合神經路徑追蹤及免疫組織化學法之研究
論文名稱(外文):Afferent Inputs of the Hypothalamic Arcuate Nucleus: Combination of Neuronal Tract Tracing and Immunohistochemical Studies
指導教授:潘震澤李蕙芸
指導教授(外文):Jenn-Tser PanHui-Yun Li
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:71
中文關鍵詞:弓狀核免疫組織化學法
外文關鍵詞:arcuate nucleusimmunohistochemical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:531
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
弓狀核的背中區是下視丘的局部多巴胺神經系統結節漏斗多巴胺(TIDA)神經系統所在。TIDA神經元活性有上午高下午低的日變週期現象,若破壞視叉上核(SCN),則TIDA神經元的週期現象便消失。此外,近年來本實驗室由側腦室注射血管活性腸胜(VIP)、腦下腺腺甘環化酶激活(PACAP)、蛙皮素(BB)等存在於SCN的神經胜,均可造成TIDA神經元的興奮。經由雙重免疫螢光染色法,可以在弓狀核的背中區,具酪胺酸羥化酶免疫活性的細胞旁,發現有VIP、PACAP及血管加壓素(AVP)免疫活性的神經末稍的分佈及並置,顯示確有VIP,PACAP及AVP之神經元投射至弓狀核。本論文之目的則是探討這些神經元源於何處。
論文中使用的動物模型,是採成熟的雌性大白鼠去卵巢後補充動情激素,此動物模型可有效模擬動情前期。在進行免疫染色前,有時會前處理秋水仙素,為了確定注射秋水仙素後,在不同的時間點犧牲動物,對TIDA神經元活性的週期變化是否有影響,以上述動物模型在補充動情激素後五天經由側腦室注射秋水仙素(48 g/rat),兩天後分別於1000、1500、1700快速斷頭犧牲動物,取其腦切片,以高效液相層析儀及電化學偵測系統檢測中突內多巴胺的代謝產物(DOPAC)濃度作為評估TIDA神經元活性的指標。實驗結果顯示在注射秋水仙素後,TIDA神經元的活性就不再呈現日變週期的改變,顯示神經元的活性表現,需要有軸突傳導的參與。本論文為顧及實驗的一致性,將實驗動物犧牲的時間點固定在上午進行。
為觀察有哪些神經核有神經纖維直接投射到弓狀核,則在補充動情素後第三天,以微量注射器將20 nl逆向神經追蹤劑fast blue直接注射到弓狀核,兩天後於側腦室注射秋水仙素,以阻斷軸突傳導,使欲觀察之神經胜能在細胞本體有較顯著的染色反應,再過兩天予以灌流犧牲,取前腦從前聯合至乳突體的腦切片進行螢光免疫染色,以螢光顯微鏡觀察有哪些神經核的VIP、PACAP、BB及AVP神經元直接投射到弓狀核。
實驗結果發現外側中膈區(lateral septum)、紋狀終底核(bed nucleus of the stria terminalis,BNST)、血管終板器(vascular organ of the lamina terminalis,OVLT)、中側視前區(medial preoptic area,MPOA)、穹窿下器(subfornical organ,SFO)、視丘室旁核(paraventricular nucleus of thalamus,PVT)、視上核(supraoptic nucleus,SON)、視叉上核(SCN)、下視丘室旁核(paraventricular nucleus of hypothalamus,PVN)、內側杏仁核(medial amygdala)及尾部弓狀核(caudal arcuate nucleus)的同側及對側神經核區域,均有神經元直接投射到弓狀核的注射部位。且位於MPO、SON、SCN、PVN的部份VIP神經元;位於MPO、SCN、PVN的部份PACAP神經元及位於SON、SCN、PVN的部份AVP神經元都有直接投射到弓狀核;唯獨BB沒有從上述的神經核區域中,被發現有直接投射到弓狀核。
由於含VIP、PACAP及AVP神經胜的神經元,多可由PVN直接投射到弓狀核,為進一步瞭解PVN神經元是否能直接與TIDA神經元形成突觸,故於動物去卵巢手術當天,同時將正向神經追蹤劑PHA-L直接注射到下視丘左側之PVN,第七天補充動情素,再過七天灌流犧牲,同樣取前腦切片進行雙重免疫組織化學染色法。結果除了同側(對側亦有少許)的Septum, BNST, OVLT, MPOA, PVT, SON, SCN, ME等區域可發現帶有PHA-L之神經纖維投射外,在弓狀核的背中區具酪胺酸羥化酶免疫活性的細胞旁,也發現許多有來自PVN的PHA-L免疫活性的神經末梢,顯示由PVN投射的神經纖維有與TIDA神經元直接形成突觸的可能。
綜合以上的結果顯示,弓狀核接受中樞許多神經核的投射,除了來自同側,也有許多來自對側神經核;同時在MPO、SON、SCN、PVN的部份含VIP、PACAP及AVP神經胜的神經元,可以直接投射到弓狀核,並可能藉此路徑調節TIDA神經元的活性。

英文摘要
A diurnal change of tuberoinfundibular dopaminergic (TIDA) neuronal activity is present in adult female rats regardless of their estrous stage. Lesion of the suprachiasmatic nuclei (SCN) invariably eliminates the rhythm. Our lab has shown that central administration of various neuropeptides, such as vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP) or bombesin (BB), those originate in the SCN, results in potent stimulation of TIDA neuronal activity. Double fluorescent immunohistochemical staining revealed close apposition of VIP-, PACAP-, and vasopressin (AVP)-immunoreactive (ir) terminals with tyrosine hydroxylase (TH)-ir neurons within the dorsomedial arcuate nucleus (dmARN). We were then of interest to learn from where VIP-, PACAP- and AVP-containing neurons that project to the ARN originate.
Adult female Sprague-Dawley rats ovariectomized plus subcutaneous estrogen implants (OVX+E2) were used. Both retrograde and anterograde tracers were adopted and combined with immunohistochemical staining of various neuropeptides. Since colchicine, an axonal transport blocker, was used in the study to enhance the immunostaining of neuropeptides in the soma of neurons, it was also of interest to learn if colchicine can affect the diurnal change of TIDA neuronal activity. Intracerebroventricular injection of colchicine (48 g/rat) completely prevented the diurnal rhythm of TIDA neuronal activity 2 days later. The TIDA neuronal activity was determined by measuring 3,4-dihydroxyphenylacetic acid (DPOAC) levels in the median eminence using HPLC-ECD. This finding indicates that the rhythmic change of TIDA neuronal activity depends on neuronal inputs. Apparently, SCN is one of the sources. Although no diurnal change in TIDA neuronal activity was evident in colchicine-treated rats, all the rats used in this study were sacrificed by 1200 h to avoid possible other time-dependent variations.
The retrograde tracer, fast blue (FB), was microinjected into the ARN of OVX+E2 rats, and followed by colchicine 2 days later. After 2 more days, the rats were sacrificed by anesthesia and transcardially perfused with 4% paraformaldehyde. Their brains were removed, postfixed, cryosectioned, and mounted on slides. FB-labeled neurons observed with UV light under a fluorescent microscope were located in the septal region, bed nucleus of stria terminalis (BNST), organum vasculosa of lamina terminalis (OVLT), subfornical organ (SFO), medial preoptic area (MPOA), periventricular nucleus (PeVN), paraventricular nucleus of thalamus (PVT), SCN, supraoptic nucleus (SON), medial amygdala, paraventricular nucleus of hypothalamus (PVN) and caudal ARN. Most FB-labeled neurons were ipsilateral to the injection side; a few contralaterally labeled neurons were also present. The sections were further immunostained with VIP, PACAP, BB or AVP antiserum. Some FB-labeled neurons in the MPOA, SCN, PVN and SON were co-localized with VIP, PACAP or AVP. No co-localization of BB with FB-labeled neurons was observed in the brain regions studied.
Since PVN is one of the nuclei that contain the most FB-labeled neurons and also the double-labeled neurons, it was further studied with an anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L). PHA-L was injected directly into the PVN to examine the efferent projections of PVN and their possible connection with TIDA neurons in the ARN. Indeed, extensive PHA-L-ir terminals were found in the dmARN among other regions like lateral septum, BNST, OVLT, MPO, PeVN, PVT, SCN, SON, amygdala and PVN itself. Furthermore, many PHA-L-ir terminals exhibited direct contacts with TH-ir (presumed TIDA) neurons in the dmARN.
In conclusion: (1) ARN receives afferent inputs from various parts of the central nervous system, especially PVN, and (2) VIP-, PACAP- and AVP-containing neurons located in the MPOA, SCN, PVN and SON may play a role in regulating the TIDA neurons.

目錄
致謝………………………………………………………………………ii
中文摘要……………………………………………………………….. iii
英文摘要………………………………………………………………... v
第一章 緒論..……………………………………………………………1
第二章 材料與方法……………………………………………………18
第三章 實驗設計與結果………………………………………………26
第四章 討論……………………………………………………………30
圖表及說明……………………………………………………………..36
參考文獻………………………………………………………………..55

參考文獻
Agnati, L.F., M. Zoli, I. Stromberg, and K. Fuxe. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69: 711-726, 1995.
Ahren, K., H. Fuxe, L. Hamberger, and T. Hokfelt. Turnover changes in the tuberoinfun-dibular dopamine neurons during the ovarian cycle of the rat. Endocrinology 88: 1415-1424, 1971.
Ajika, K., and T. Hokfelt. Ultrastructural identification of catecholamine neurones in the hypothalamic periventricular-arcuate nucleus-median eminence complex with special reference to quantitative aspects. Brain Res. 57: 97-117, 1973.
Alper, R.H., K.T. Demarest, and K.E. Moore. Morphine differentially alters synthesis and turnover of dopamine in central neuronal systems. J. Neural Transm. 48: 157-165, 1980.
Anastasi, A., V. Erspamer, and M. Bucci. Isolation and structure of bombesin and alytesin, two analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia. 27: 166-167, 1971.
Anderson, S.T., and J.D Curlewis. PACAP stimulates dopamine neuronal activity in the medial basal hypothalamus and inhibits prolactin. Brain Res. 790: 343-346, 1998.
Anschel, S., M. Alexander, and A.A. Perachio. Multiple connections of medial hypothal-amic neuron in the rat. Exp. Brain Res. 46: 383-392, 1982.
Antoni, F.A. Hypothalamic contral of adrenocorticotropin secretion: advance since the discovery of 41-residue corticotropin-releasing factor. Endocr. Rev. 7: 351-378, 1986.
Arbogast, L.A., and J.L. Voogt. Hyperprolactinemia increases and hypoprolactinemia decreases tyrosine hydroxylase messenger ribonucleic acid levels in the arcuate nuclei, but not the substantia nigra or zona incerta. Endocrinology 128: 997-1005, 1991.
Arbogast, L.A., and J.L. Voogt. Pituitary adenylate cyclase-activating polypeptide (PACAP) increases prolactin release and tuberoinfundibular dopaminergic neuronal activity. Brain Res. 655: 17-24, 1994.
Azmitia, E.C., and M. Segal. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in rat. J. Comp. Neurol. 179: 641-668, 1978.
Babu, G.N., and E. Vijayan. Plasma gonadotropin, prolactin levels and hypothalamic tyrosine hydroxylase activity following intraventricular bombesin and secretin in ovariectomized conscious rats. Brain Res. Bull. 11: 25-29, 1983.
Ben-Jonathan, N. Dopamine: a prolactin-inhibiting hormone. Endocr. Rev. 6: 564-589, 1985.
Ben-Jonathan, N., C. Oliver, H.J. Weiner, R.S. Mical, and J.C. Porter. Dopamine in hypophysial portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100: 452-458, 1977.
Besson, J., A. Sarrieau, M. Vial, J.C. Marie, G. Rosselin and W. Rostene. Characteriza-tion and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res. 398: 329-336, 1986.
Boudaba C., K. Szabo, and J.G. Tasker. Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J. Neurosci. 16: 7151-7160, 1996.
Brown M.H., and A.A. Nunez. Hypothalamic circuits and circadian rhythms: effects of knife cuts vary with their placement within the suprachiasmatic area. Brain Res. Bull. 16: 705-711, 1986.
Brown, M., J. Rivier, and W. Vale. Bombesin: potent effects on thermoregulation in the rat. Science 196: 998-1000, 1977.
Brown, M., J.Rivier, and W. Vale. Actions of bombesin, thyrotropin releasing factor, prostaglandin E2 and naloxone on thermoregulation in the rat. Life Sci. 20: 1681-1687, 1977.
Brown, M., Y. Tache, and D. Fisher. Central nervous system action of bombesin: mecha-nism to induce hyperglycemia. Endocrinology 105: 660-665, 1979.
Bugnon, C., B. Bloch, D. Lenys, A. Gouget, and D. Fellman. Comparative study of the neuronal populations containing -endophin, corticotropin and dopamine in the arcu-ate nucleus of the rat hypothalamus. Neurosci. Lett. 14: 43-48, 1979.
Buijs, R.M. Immunocytochemical demonstration of vasopressin and oxytocin in the rat brain by light and electron microscopy. J. Histochem. Cytochem. 28: 357-360, 1980.
Card J.P., S. Fitzpatrick-McElligott, I. Gozes, and F. Jr. Baldino. Localization of vaso-pressin-, vasoactive intestinal polypeptide-, peptide histidine isoleucine- and somato-statin-mRNA in rat suprachiasmatic nucleus. Cell Tissue Res. 252: 307-315, 1988.
Carr, L.A., and J.L. Voogt. Catecholamine synthesizing enzymes in the hypothalamus during the estrous cycle. Brain Res. 196: 437-445, 1980.
Cauvin, A., L. Buscail, P. Gourlet, P. De Neef, D. Gossen, A. Arimura, A. Miyata, D.H. Coy, P. Robberecht, and J. Christophe. The novel VIP-like hypothalamic polypeptide PACAP interacts with high affinity receptors in the human neuroblastoma cell line NB-OK. Peptides 11: 773-777, 1990.
Chen, J.C., and V.D. ramirez. Effects of prolactin on tyrosine hydroxylase activity on central dopaminergic neurons of male rats. Eur. J. Pharmacol. 166; 473-479, 1989.
Chronwall, B.M. Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides (Suppl.) 6: 1-11, 1985.
Chronwall, B.M., J.J. Pisano, J.F. Bishop, T.W. Moody, and T.L. O'Donohue. Biochemical and histochemical characterization of ranatensin immunoreactive peptides in rat brain: lack of coexistence with bombesin/GRP. Brain Res. 338: 97-113, 1985.
Chronwall, B.M., R.M. Knight, and T.L. O’Donohue. Colcocalization and segregation of peptides in the hypothalamic arcuate nucleus of the rat. Soc. Neurosci. Abstr. 10:155, 1984.
Conrad, L.C. and D.W. Pfaff. Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J. Comp. Neurol. 169: 185-219, 1976.
Cunningham E.T Jr., M.C. Bohn, and P.E. Sawchenko. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J. Comp. Neurol. 292: 651-667, 1990.
Cunningham E.T. Jr., and P.E. Sawchenko. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J. Comp. Neurol. 274: 60-76, 1988.
Daikoku S., S. Hisano, and Y. Kagotani. Neuronal associations in the rat suprachiasma-tic nucleus demonstrated by immunoelectron microscopy. J. Comp. Neurol. 325: 559-71, 1992.
Dalcik, H., and C.J. Phelps. Median eminence-afferent vasoactive intestinal peptide (VIP) neurons in the hypothalamus: localization by simultaneous tract tracing and immunocytochemistry. Peptides 14: 1059-1066, 1993.
Day T.A., A.V. Ferguson, and L.P. Renaud. Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells. J. Physiol. (Lond) 355: 237-249, 1984.
Demarest, K.T. and K.E. Moore. Sexual differences in the sensitivity of tuberoinfundibu-lar dopamine neurons to the actions of prolactin. Neuroendocrinology 33: 230-234, 1981.
Deyo, S.N., R.M. Swift, and R.J. Miller. Morphine and endophine modulate dopamine turnover in rat median eminence. Proc. Natl. Acad. Sci. U.S.A. 76: 3006-3009, 1979.
Dietl, M.M., P.R. Hof, J.L. Martin, P.J. Magistretti, and J.M. Palacios. Autoradiographic analysis of the distribution of vasoactive intestinal peptide binding sites in the vertebrate central nervous system: a phylogenetic study. Brain Res. 520: 14-26, 1990.
Everitt, B.J., T. H. Hokfelt, J.-Y. Wu, and M.Goldstein. Coexistence of tyrosine hydroxylase-like and gamma-aminobutyric acid-like immunoreactivities in neurons of the arcuate nucleus. Neuroendocrinology 39: 189-191, 1984b.
Everitt, B.J., T. H. Hokfelt, L. Terenius, K.Tatemoto, V. Mutt, and M. Goldstein. Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 11: 443-462, 1984a.
Ferin M., P.E. Zimmering, and R.L. Vande-Wiele. Effects of antibodies to estradiol-17-beta on PMS-induced ovulation in immature rats. Endocrinology 84: 893-900, 1969.
Frain, O., and V. Leviel. Mesencephalic TH mRNA-reduced expression by blocking axonal transport with colchicine. Neuroreport 9: 1529-1532, 1998.
Fukuhara, C., N. Suzuki, Y. Matsumoto, Y. Nakayama, K. Aoki, G. Tsujimoto, S.I. Inouye, and Y. Masuo. Day-night variation of pituitary adenylate cyclase-activating polypeptide (PACAP) level in the rat suprachiasmatic nucleus. Neurosci. Lett. 229: 49-52, 1997.
Fuxe, K., .LF. Agnati, T. McDonald, V. Locatelli, T. Hokfelt, C.J. Dalsgaard, N. Battistini, N. Yanaihara, V. Mutt, and A.C. Cuello. Immunohistochemical indications of gastrin releasing peptide-bombesin-like immunoreactivity in the nervous system of the rat. Codistribution with substance P-like immunoreactive nerve terminal systems and coexistence with substance P-like immunoreactivity in dorsal root ganglion cell bodies. Neurosci. Lett. 37: 17-22, 1983.
Fuxe, K., T. H. Kfeit, P. Eneroth, J.A. Gustafsson, and P. Skett. Prolactin-like immunore-activity: localization in nerve terminals of rat hypothalamus. Science 196: 899-900, 1977.
Gall, C., K.B. Seroogy, and N. Brecha. Distribution of VIP- and NPY-like immuno-reactivities in rat main olfactory bulb. Brain Res. 374: 389-394, 1986.
Gibson, S.J., J.M Polak, S.R. Bloom, and P.D. Wall. The distribution of nine peptides in rat spinal cord with special emphasis on the substantia gelatinosa and on the area around the central canal (lamina X). J. Comp. Neurol. 201: 65-79, 1981.
Gillette, M.U., and R.A. Prosser. Circadian rhythm of the rat suprachiasmatic brain slice is rapidly reset by daytime application of cAMP analogs. Brain Res. 474: 378-352, 1988.
Grandison, L., and A. Guidotti. Regulation of prolactin release by endogenous opiates. Nature (Lond) 270: 357-359. 1977.
Gray T.S., M.E. Carney, and D.J. Magnuson, Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 50: 433-446,1989.
Gray, T.S., T.L. O’Donohue, S.J. Watson, and D.J. Magnuson. Pro-opiomelanocortin and neuropeptide Y projections from arcuate and peri-arcuate hypothalamic areas to the nucleus tractus solitarious-dorsal vagal complex. Soc. Neurosci. Abstr. 10: 432, 1984.
Gudelsky, G.A., S.A. Berry, and H.Y. Meltzer. Neurotensin activates tuberoinfundibular dopamine neurons and increase serum corticosterone concentration in the rat. Neuroendocrinology 49: 604-609, 1989.
Hagino, N., B. Kosaras, and B. Flerk. Septal projection to the arcuate nucleus of the hypothalamus. Acta. Biol. Acad. Sci. Hung. 28: 235-238, 1977.
Hannibal, J., J.D.,Mikkelsen, J. Fahrenkrug, and P.J. Larsen. Pituitary adenylate cyclase-activating peptide gene expression in corticotropin-releasing factor-containing parvicellular neurons of the rat hypothalamic paraventricular nucleus is induced by colchicine, but not by adrenalectomy, acute osmotic, ether, or restraint stress. Endocrinology 136: 4116-4124, 1995.
Hannibal, J., J.M. Ding, D. Chen, J. Fahrenkrug, P.J. Larsen, M.U. Gillette, and J.D. Mikkelsen. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J. Neurosci. 17: 2637-2644, 1997.
Harris, M.C., and M. Sanghera. Projection of medial basal hypothalamic neurons to the preoptic anterior hypothalamic areas and the paraventricular nucleus in the rat. Brain Res. 81: 401-411, 1974.
Haskins, J.T., G.A. Gudelsky, R.L. Moss, and J.C. Porter. Iontophoresis of morphine into the arcuate nucleus: effects on dopamine concentrations in hypophysial portal plasma and serum prolactin concentrations. Endocrinology 108; 767-771, 1981.
Horvath, T.L. Suprachiasmatic efferents avoid phenestrated capillaries but innervate neuroendocrine cells, including those producing dopamine. Endocrinology 138: 1312-1320, 1997.
Huang, S.K. Effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide on tuberoinfundibular dopaminergic neuronal activity and prolactin secretion. Ph.D. Dissertation, Institute of Physiology, National Yang-Ming University 1997.
Huang, S.K., and J.T. Pan. Stimulatory effects of vasoactive intestinal peptide and pituit-ary adenylate cyclase-activating peptide on tuberoinfundibular dopaminergic neuron activity in estrogen-treated ovariectomized rats and their correlation with prolactin secretion. Neuroendocrinology 64: 208-214, 1996.
Ibata, Y., K. Fukui, H. Okamura, T. Kawakami, M. Tanaka, H.L. obata, T. Tsuto, H. Terubayashi, C. Yanaihara, and N. Yanaihara. Coexistence of dopamine and neurotensin in the hypothalamic arcuate and periventricular neurons. Brain Res. 269: 177-179, 1983.
Inouye S.-I.T. Does the ventromedial hypothalamic nucleus contain a self-sustained circadian oscillator associated with periodic feedings?. Brain Res. 279: 53-63, 1983.
Inouye S.-I.T. Light responsiveness of the suprachiasmatic nucleus within the island with the retino-hypothalamic tract spared. Brain Res. 294: 263-268, 1984.
Inouye, S.-I.T. Circadian rhythms of neuropeptides in the suprachiasmatic nucleus. Prog. Brain Res. 111: 75-90, 1996.
Inouye S.-I.T., and H. Kawamura. Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. U.S.A. 76: 5962-5966, 1979.
Inouye S.-I.T., and H. Kawamura. Characteristics of a circadian pacemaker in the supra-chiasmatic nucleus. J. Comp. Physiol. 146: 153-160, 1982.
Itoh, S., G. Katsuura, and A. Takashina. Effects of vasoactive intestinal peptide on dopaminergic system in the rat brain. Peptides 9: 315-317, 1988.
Jones, B.E., and R.Y. Moore. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res. 127; 23-53, 1977.
Kimura, S., Y. Ohshige, L. Lin, T. Okumura, C. Yanaihara, N. Yanaihara, and Y. Shiotani. Localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamus-pituitary system in rats: light and electron microscopic immunocytochemical studies. J. Neuroendocrinol. 6: 503-507, 1994.
Kiss, J.Z. Dynamism of chemoarchitecture in the hypothalamic paraventricular nucleus. Brain Res. Bull. 29: 699-708, 1988.
Kivipelto, L., A. Absood, A. Arimura, F. Sundler, R. Hakanson, and P. Panula. The distribution of pituitary adenylate cyclase-activating polypeptide-like immunoreactiv-ity is distinct from helodermin- and helospectin-like immunoreactivities in the rat brain. J. Chem. Neuroanat. 5: 85-94, 1992.
Koves, K., A. Arimura, T.G. Gorcs, A. Somogyvari-Vigh. Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 54: 159-169, 1991.
Koves, K., J.T. Gorcs, and A. Arimura. Colocalization of PACAP, but not of VIP, with oxytocin in the hypothalamic magnocellular neurons of colchicine treated and pituitary stalk sectioned rats. Endocrine 2: 1169-1175, 1994a.
Koves, K. J.T. Gorcs, M. Kausz, and A. Arimura. Present status of knowledge about the distribution and colocalization of PACAP in the forebrain. Acta Biol. Hung. 45: 297-321, 1994b.
Krulich, L., J.I. Koenig, S. Conway, S.M. McCann, and M.A. Mayfield. Opioid  receptors and the secretion of prolactin and growth hormone in the rat. Neuroendocrinology 42: 75-81, 1986.
Kwa, H.G., and F. Verhofstad. Prolactin levels in the plasma of female rats. J. Endocrinol. 39: 455-456, 1967.
Leadem, C.A., and S.V. Yagenova. Effects of specific activation of Mu-, Delta- and Kappa-opioid receptors on the secretion of luteinizing hormone and prolactin in the ovariectomized rat. Neuroendocrinology 45: 109-117, 1987.
Lechan, R.M., J.L. Nestler, and S. Jacobosn. The tuberoinfundibular system of the rat as demonstrated by immunohistochemical localization of retrogradely transported wheat germ agglutinin(WGA) from the median eminence. Brain Res. 245: 1-15, 1982.
LeDoux, J.E., Emotion. In: Handbook of Physiology- The Nervous System V. Edited by F. Bloom, and A. Test. American Physiological Society, Washington, 1987. pp. 419-459.
Leng, G., H. Yamashita, R.E. Dyball, and R. Bunting. Electrophysiological evidence for a projection from the arcuate nucleus to the supraoptic nucleus. Neurosci. Lett. 89: 146-151, 1988.
Li, C., P.L. Chen, and M.S. Smith. Identification of neuronal input to the arcuate nucleus (ARH) activated during lactation: implications in the activation of neuropeptide Y neurons. Brain Res. 824: 267-276, 1999.
Lin, J.Y., and J.T. Pan. Bombesin and neurotensin excite neuron in hypothalamic arcuate nucleus in brain slice: an extracellular single-unit study. Brain Res. Bull. 30: 177-180, 1993.
Lin, J.Y., and J.T. Pan. Stimulatiry effects of bombesin-like peptides on hypothalamic arcuate neurons in the rat brain slices. Brain Res. Bull. 35: 241-246, 1994.
Lin, J.Y., and J.T. Pan. Effects of endogenous poioid peptides and their analogs on the activities of hypothalamic arcuate neurons in brain slices from diestrous and OVX rats. Brain Res. Bull. 36: 225-233, 1995.
Lindley, S.E.., K.J. Lookingland, and K.E. Moore. Activation of tuberoinfundibular but not tuberohypophysial dopaminergic neurons following intracerebroventricular administration of —melanocyte-stimulating hormone. Neuroendocrinology 51: 394-399, 1990.
Lookingland, K.J., and K.E. Moore. Acute effects of morphine on neurochemical estim-ates of activity of incertohypothalamic dopaminergic neurons in the male rat. Brain Res. 348: 205-212, 1985.
Loren, I., P.C. Emson, J. Fahrenkrug, A. Bjorklund, J. Alumets, R. Hakanson, and F. Sundler. Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience 4: 1953-1976, 1979.
Magistretti, P.J. Intercellular communication mediated by VIP in the cerebral cortex. Peptides 1: 169-173, 1986.
Mai, L.M. The role of oxytocin and vasopressin on prolactin secretion. Master Thesis, Institute of physiology, National Yang-Ming Medical College, 1989.
Mai, L.M., and J.T. Pan. Central administration of bombesin blocks the estrogen-induced afternoon prolactin surge. Neuroendocrinology 57: 40-44, 1993.
Mai, L.M., and J.T. Pan. Bombesin acts in the suprachiasmatic nucleus to affect circadian changes in tuberoinfundibular dopaminergic neuron activity and prolactin secretion. Endocrinology 136: 4163-4167, 1995.
Mai, L.M., K.R. Shieh, and J.T. Pan. Circadian changes of serum prolactin levels and tuberoinfundibular dopaminergic neuron activities in ovariectomized rats treated with or without estrogen: the role of the suprachiasmatic nuclei. Neuroendocrinology 60: 520-526, 1994.
Makara, G.B., and L. Hodcs. Rostral projections from the hypothalamic arcuate nucleus. Brain Res. 84: 23-29, 1975.
Manzanares, J., T.W. Toney, K.J. Lookingland, and K.E. Moore. Activation of tubero-infundibular and tuberohypophysial dopamine neurons following intracerebroventri-cular administration of bombesin. Brain Res. 565: 142-147, 1991.
Marley, P.D., P.C. Emson, S.P. Hunt, and J. Fahrenkrug. A long ascending projection in the rat brain containing vasoactive intestinal polypeptide. Neurosci. Lett. 27: 261-266, 1981.
Martin, J.L., M.M. Dietl, P.R. Hof, J.M. Palacios, and P.J. Magistretti. Autoradiographic mapping of [mono[125I]iodo-Tyr10, MetO17]vasoactive intestinal peptide binding sites in the rat brain. Neuroscience 23:539-565, 1987.
Masuo, Y., T. Ohtaki, Y. Masuda, M. Tsuda, and M. Fujino. Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res. 575(1):113-123, 1992.
Matsuda, S. The bombesin-like peptide system. In: Atlas of Neuroactive Substances and Their Receptors in the Rat. Edited by Tohyama, M. and K. Takatsuji, Oxford University Press, New York, 1998, pp. 234-241.
McCoy, J.G., and D.D.Avery. Bombesin: potential integrative peptide for feeding and satiety. Peptides 11: 595-607, 1990.
Meister, B., T. Hokfelt, H.W. Steinbusch, G. Skagerberg, O. Lindvall, M. Geffard, T.H. Joh, A.C. Cuello, and M. Goldstein. Do tyrosine hydroxylase-immunoreactive neurons in the ventrolateral arcuate nucleus produce dopamine or only L-dopa?. J. Chem. Neuroanat. 1: 59-64, 1988
Merchenthaler, I., S. Vigh, A.V. Schally, and P. Petrusz. Immunocytochemical loca-lization of growth hormone-releasing factor in the rat hypothalamus. Endocrinology 114: 1082-1085, 1984.
Mikkelsen, J.D., J. Hannibal, P.J. Larsen and J. Fahrenkrug. Pituitary adenylate cyclase activating peptide (PACAP) mRNA in the rat neocortex. Neurosci. Lett. 171: 121-124, 1994.
Mikkelsen, J.D., J. Hannibal, J. Fahrenkrug, P.J. Larsen, J. Olcese, and C. McArdle. Pituitary adenylate cyclase activating peptide-38 (PACAP-38), PACAP-27, and PACAP related peptide (PRP) in the rat median eminence and pituitary. J. Neuroendocrinol. 7: 47-55, 1995.
Miselis R.R., R.E. Shapiro, and P.J. Hand. Subfornical organ efferents to neural systems for control of body water. Science 205: 1022-1025, 1979.
Miyata, A., A. Arimura, R.R. Dahl, N. Minamino, A. Uehara, L. Jiang, M.D. Culler, and D.H. Coy. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Comm. 164: 567-574, 1989.
Miyata, A., L. Jiang, R.R. Dahl, C. Kitada, K. Kubo, M. Fujino, N. Minamino, and A. Arimura. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Comm. 170: 643-648, 1990.
Moody, T.W., C.B. Pert, J. Rivier, and M.R. Brown. Bombesin: specific binding to rat brain membranes. Proc. Natl. Acad. Sci. U.S.A. 75: 5372-5376, 1978.
Moody, T.W., R. Getz, T.L. O'Donohue, and J.M. Rosenstein. Localization of receptors for bombesin-like peptides in the rat brain. Ann. N. Y. Acad. Sci. 547: 114-130, 1988.
Moore, K.E. Interactions between prolactin and dopaminergic neurons. Biol. Reprod. 36: 47-58,1987.
Naftolin, F., G. Mor, T.L. Horvath, S. Luquin, A.B. Fajer, F. Kohen, and L.M. Garcia-Segura. Synaptic remodeling in the arcuate nucleus during the estrous cycle is induced by estrogen and precedes the preovulatory gonadotropin surge. Endocrinology 137: 5576-5580, 1996.
Neill, J.D. Effect of "stress" on serum prolactin and luteinizing hormone levels during the estrous cycle of the rat. Endocrinology 87: 1192-1197, 1970.
Neill, J.D. Sexual differences in the hypothalamic regulation of prolactin secretion. Endocrinology 90: 1154-1159, 1972.
Neill, J.D., and G.M. Nagy. Prolactin secretion and its control. In: The Physiology of Reproduction. 2nd ed., Edited by Knobil, E. and J.D. Neill, Raven Press, New York, 1994, pp. 1833-1860.
Neill JD., M.E. Freeman, and S.A. Tillson. Control of the proestrus surge of prolactin and luteinizing hormone secretion by estrogens in the rat. Endocrinology 89: 1448-1453, 1971.
O’Donohue, T.L., W.R. Crowley, and D.M. Jacobowitz. Biochemical mapping of the noradrenergic ventral bundle projection sites: evidence for a noradrenergic-dopaminergic interaction. Brain Res. 172: 87-100, 1979a.
O’Donohue, T.L., R.L. Miller, and D.M. Jacobowitz. Identification, characterization and stereotaxic mapping of intraneuronal -melanocyte stimulating hormone-like immunoreactive peptides in discrete regions of the rat brain. Brain Res. 176: 101-123, 1979b.
Okamura, H., A. Miyagawa, H. Takagi, H. Esumi, N. Yanaihara, and Y. Ibata. Co-existence of PACAP and nitric oxide synthase in the rat hypothalamus. Neuroreport 5: 1177-1180, 1994.
Ottersen, O.P. Afferent cinnections to the amygdaloid complex of the rat and cat : I Afferents from the hypothalamus and the basal telencephalon. J. Comp. Neurol. 194: 267-289, 1980.
Palkovits, M., and L. Zaborszky. Neural connections of the hypothalamus. In: Anatomy of the Hypothalamus. Edited by Morgane, P.J., and J. Pankseep , Dekker, New York, 1979, pp. 379-507.
Palkovits, M., E. Mezey, L. Zaborszky, A. Feminger, D.H. Versteeg, H.L.J.M. Wijnen, W. DeJong, M.I.K. Fekete, J.P. Herman, and B. Kanyicska. Adrenergic innervation of the rat hypothalamus. Neurosci. Lett. 18: 237-243, 1980.
Pan, J.T., and R.R. Gala. Central nervous system regions involved in the estrogen-induced afternoon prolactin surge. I. Lesion studies. Endocrinology 117: 382-387, 1985.
Pan, J.T., and L.M. Mai. Dopamine antagonism does not potentiate the effects of oxytocin and vasopressin on prolactin secretion. Life Sci. 47:2443-2450, 1990.
Pan, J.T., and K.L. Teo. Fentanyl stimulates prolactin release through -opiate receptors, but not the serotonergic system. Endocrinology 125: 1863-1869, 1989.
Pan, J.T., and L.M. Mai. Dopamine antagonism does not potentiate the effects of oxytocin and vasopressin on prolactin secretion. Life Sci. 47: 2443-2450, 1990.
Pan, J.T., Y. Tian, K.J. Lookingland and K.E. Moore. Neurotensin-induced activation of hypothalamic dopaminergic neurons is accompanied by a decrease in pituitary secretion of prolactin and —melanocyte-stimulating hormone. Life Sci. 50: 2011-2017, 1992.
Panula, P. Histochemistry and function of bombesin-like peptides. Med. Biol. 64: 177-192, 1986.
Panula, P., H.Y. Yang, and E. Costa. Neuronal location of the bombesin-like immunoreactivity in the central nervous system of the rat. Regul. Pept. 4: 275-283, 1982.
Panula, P., H.Y. Yang, and E. Costa. Comparative distribution of bombesin/GRP- and substance-P-like immunoreactivities in rat hypothalamus. J. Comp. Neurol. 224: 606-617, 1984.
Panula, P., O. Nieminen, M. Falkenberg, and S. Auvinen. Localization and development of bombesin/GRP-like immunoreactivity in the rat central nervous system. Ann. N. Y. Acad. Sci. 547: 54-69, 1988.
Pasqualini, C., F. Bojda, and B. Kerdelhue. Direct effect of estradiol on the number of dopamine receptors in the anterior pituitary of ovariectomized rats. Endocrinology 119: 2484-2489, 1986.
Pasqualini, C., F. Bojda, F. Gaudoux, B. Guibert, V. Leviel, E. Teissier, R. Rips, and B. Kerdelhue. Changes in tuberoinfundibular dopaminergic neuron activity during the rat estrous cycle in relation to the prolactin surge: alteration by a mammary carcinogen. Neuroendocrinology 48: 320-327, 1988.
Pert, A., T.W. Moody, C.B. Pert, L.A. Dewald, and J. Rivier. Bombesin: receptor distribution in brain and effects on nociception and locomotor activity. Brain Res. 193: 209-220, 1980.
Pieper, D.R., and R.R. Gala. The effect of light on the prolactin surges of pseudopregnant and ovariectomized, estrogenized rats. Biol. Reprod. 20: 727-732, 1979.
Piggins, H.D., J.A. Stamp, J. Burns, B. Rusak, and K. Semba. Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. J. Comp. Neurol. 376: 278-294, 1996.
Rance, N., P.M. Wise, M.K. Selmanoff, and C.A. Barraclough. Catecholamine turnover rates in discrete hypothalamic areas and associated changes in median eminence luteinizing hormone-releasing hormone and serum gonadotropins on proestrus and diestrous day 1. Endocrinology 108: 1795-1802, 1981.
Rawlings, S.R., and M. Hezareh. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: actions on the anterior pituitary gland. Endocr. Rev. 17: 4-29, 1996.
Rethelyi, M., and B. Halasz. Origin of the nerve endings in the surface of the median eminence of the rat hypothalamus. Exp. Brain Res. 11: 145-158, 1970.
Ricardo, J.A., and E.T. Koh. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala and other forebrain structures in the rat. Brain Res. 153: 1-26, 1978.
Rivier, C., J. Rivier, and W. Vale. The effect of bombesin and related peptides on prola-ctin and growth hormone secretion in the rat. Endocrinology 102: 519-522, 1978.
Roland B.L., and P.E. Sawchenko. Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J. Comp. Neurol. 332: 123-143, 1993.
Rosas-Arellano, M.P., L.P. Solano-Flores, and J. Ciriello. Neurotensin projections to subfornical organ from arcuate nucleus. Brain Res. 706: 323-327, 1996.
Rostene, W.H. Neurobiological and neuroendocrine functions of the vasoactive intestinal peptide (VIP). Prog. Neurobiol. 22: 103-129, 1984.
Roth, K.A., E. Weber, and J.D. Barchas. Distribution of gastrin releasing peptide-bombesin-like immunostaining in rat brain. Brain Res. 251: 277-282, 1982.
Said, S.I., and V. Mutt. Polypeptide with broad biological activity: isolation from small intestine. Science 169: 1217-1218, 1970
.
Saper, C.B., A.D. Loewy, L.W. Swanson, and W.M. Cowan. Direct hypothalamoauto-nomic connections. Brain Res. 117: 305-312, 1976.
Sawchenko, P.E. and L.W. Swanson. Immunohistochemical identificantion of neurons in the paraventricular nucleus of hypothalamus that project to the medulla or the spinal cord in the rat. J. Comp. Neurol. 205: 260-272, 1982.
Sawchenko, P.E., and L.W. Swanson. The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J. Comp. Neurol. 218: 121-144, 1983.
Sawchenko, P.E., P.M. Plotsky, S.W. Jr. Pfeiffer, E.T. Cunningham, J. Vaughan, J. Rivier, and W. Vale. Inhibin beta in central neural pathways involved in the control of oxytocin secretion. Nature 334: 615-7, 1988.
Sawchenko, P.E., C. Arias, and J.C. Bittencourt. Inhibin beta, somatostatin, and enkepha-lin immunoreactivities coexist in caudal medullary neurons that project to the paraven-tricular nucleus of the hypothalamus. J. Comp. Neurol. 291: 269-280, 1990.
Sawchenko, P.E., E.R. Brown, R.K. Chan, A. Ericsson, H.Y. Li, B.L. Roland, and K.J. Kovacs. The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog. Brain Res. 107: 201-222, 1996.
Schwanzel-Fukuda, M., J.I. Morrell, and D.W. Pfaff. Localization of forebrain neurons which project directly to the medulla and spinal cord of the rat by retrograde tracing with wheat germ agglutinin. J. Comp. Neurol. 226: 1-20, 1984.
Schwartz, W.J., R.J. Coleman, and S.M. Reppert. A daily vasopressin rhythm in rat cerebrospinal fluid. Brain Res. 263: 105-112, 1983.
Schwartz, W.J., and S.M. Reppert. Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: a pre-eminent role for the suprachiasmatic nuclei. J. Neurosci. 5: 2771-2778, 1985.
Shieh. K.R., and J.T. Pan. Nicotinic control of tuberoinfundibular dopaminergic neuron activity and prolactin secretion: diurnal rhythm and involvement of endogenous opioidergic system. Brain Res. 756: 266-272, 1997.
Shin, S.H. Vasopressin has a direct effect on prolactin release in male rats. Neuroendocrinology 34:55-58, 1982.
Shinohara, K., K. Tominaga, Y. Isobe, and S.-I.T. Inouye. Photic regulation of peptides located in the ventrolateral subdivision of the suprachiasmatic nucleus of the rat: daily variations of vasoactive intestinal polypeptide, gastrin-releasing peptide, and neuropeptide Y. J. Neurosci. 13: 793-800, 1993.
Shivers, B.D., T.J. Gorcs, P.E. Gottschall and A. Arimura. Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology 128: 3055-3065, 1991.
Shull, J.D., and J. Gorski. Estrogen stimulates prolactin gene transcription by a mechanism independent of pituitary protein synthesis. Endocrinology 114: 1550-1007, 1984.
Shull, J.D., and J. Gorski. Estrogen regulation of prolactin gene transcription in vivo: paradoxical effects of 17-estradiol dose. Endocrinology 124: 279-285, 1989.
Sims, K.B., D.L. Hoffman, S.I. Said, and E.A. Zimmerman. Vasoactive intestinal poly-peptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res. 186: 165-183, 1980.
Smith, S.W., and R.R. Gala. Influence of restraint on plasma prolactin and corticosterone in female rats. J. Endocrinol. 74: 303-314, 1977.
Sofroniew, M.V., and A. Weindl. Projections from the parvocellular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus. Am. J. Anat. 153: 391-429, 1978.
Sofroniew, M.V., and A. Weindl. Identification of parvocellular vasopressin and neurophysin neurons in the suprachiasmatic nucleus of a variety of mammals including primates. J. Comp. Neurol. 193: 659-675, 1980.
Sofroniew, M.V., A. Weindl, U. Schrell, and R. Wetzstein. Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain. Acta Histochem. (Suppl.) 24:79-95, 1981.
Spiegel, K., I.A. Kourides, and G.W. Pasternak. Prolactin and growth hormone release by morphine in the rat: different receptor mechanisms. Science 217: 745-747, 1982.
Staun-Olsen, P., B. Ottesen, S. Gammeltoft, and J. Fahrenkrug. The regional distribution of receptors for vasoactive intestinal polypeptide (VIP) in the rat central nervous system. Brain Res. 330: 317-321, 1985.
Strahlendorf, J.C., H. K. Strahlendorf, and C.D. Barnes. Inhibition of periaqueductal gray neurons by the arcuate nucleus: partial mediation by endorphin pathway. Exp. Brain Res. 46: 462-466, 1982.
Swanson L.W., and W.M. Cowan. The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J. Comp. Neurol.. 160: 1-12, 1975.
Swanson L.W., and W.M. Cowan. The connections of the septal region in the rat. J. Comp. Neurol. 186: 621-656, 1979.
Swanson, L.W., and H.G. Kuypers. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194: 555-570, 1980.
Swanson, L.W., and P.E. Sawchenko. Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanism. Neuroendocrinology 31: 410-417, 1980.
Szafarczyk, A., G. Ixart, F. Malaval, J. Nouguier-Soule, and I. Assenmacher. Effects of lesions of the suprachiasmatic nuclei and of p-chlorophenylalanine on the circadian rhythms of adrenocorticotrophic hormone and corticosterone in the plasma, and on locomotor activity of rats. J. Endocrinol. 83: 1-16, 1979.
Tache, Y., M. Brown, and R. Collu. Central nervous system actions of bombesin-like peptide. In: Brain Peptides and Hormones, Edited by R. Collu. Raven Press, New York, 1982, pp. 183-196.
Tache, Y., M. Brown, and R. Collu. Effects of neuropeptides on adenohypophyseal hormone response to acute stress in male rats. Endocrinology 105: 220-224, 1979.
Takahashi, K., K. Totsune, O. Murakami, F. Satoh, M. Sone, M. Ohneda, H. Sasano, and T. Mouri. Pituitary adenylate cyclase activating polypeptide (PACAP)-like immuno-reactivity in human hypothalamus: co-localization with arginine vasopressin. Regul. Pept. 50: 267-275, 1994.
Toney, T.W., and B.S. Katzenellenbogen. Antiestrogen action in the medial basal hypotha-lamus and pituitary of immature female rats: insights concerning relationships among estrogen, dopamine and prolactin. Endocrinology 119: 2661-2669, 1986.
Tsuruo, Y., S. Hisano, Y. Okamura, N. Tsukamoto, and S. Daikoku. Hypothalamic substance P-containing neurons. Sex-dependent topographical differences and ultrastructural transformations. Brain Res. 305: 331-341, 1984.
van den Pol, A.N. The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J. Comp. Neurol. 191: 661-702, 1980.
van den Pol A.N., and K.L. Tsujimoto. Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15: 1049-1086, 1985.
van den Pol, A.N. The suprachiasmatic nucleus: morphological and cytochemical substrates for cellular interaction. In: Suprachiasmatic Nucleus: The Mind’s Clock. Edited by D.C. Klein, R.Y. Moore, and S.M. Reppert. Oxford University Press, New York, pp. 17-50, 1991.
Van der Kar, L.D., and S.A. Lorens. Differential serotoninergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and median midbrain raphe nuclei. Brain Res. 162: 45-54, 1979.
Vincent, S.R., K. Satoh, D.M. Armstrong, P. Panula, W. Vale, and H.C. Fibiger. Neuro-peptides and NADPH-diaphorase activity in the ascending cholinergic reticular system of the rat. Neuroscience 17: 167-182, 1986.
Walsh, J.H. H.C. Wong, and G.J. Dockray. Bombesin-like peptides in mammals. Fed. Proc. 38: 2315-2319, 1979.
Wang, D., and E. Cutz. Simultaneous detection of messenger ribonucleic acids for bombesin/gastrin-releasing peptide and its receptor in rat brain by nonradiolabeled double in situ hybridization. Lab. Invest. 70: 775-780, 1994.
Watts, A.G. The efferent projections of suprachiasmatic nucleus: Anatomical insights into the control of circadian rhythms. In: Suprachiasmatic Nucleus: The Mind’s Clock. Edited by D.C. Klein, R.Y. Moore, and S.M. Reppert. Oxford University Press, New York, pp. 77-106, 1991
Watts A.G., L.W. Swanson, and G. Sanchez-Watts. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258: 204-229, 1987.
Watts A.G., and L.W. Swanson. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J. Comp. Neurol. 258: 230-252, 1987.
Wiegand, S.J., and J.L. Price. Cells of origin of the afferent fibers to the median emi-nence in the rat. J. Comp. Neurol. 192:1-19, 1980.
Yen, S.H., and J.T. Pan. Atrial natriuretic peptide negatively modulates the stimulatory effects of angiotensin II on tuberoinfundibular dopaminergic neuronal activity. Neuroendocrinology 66: 313-320, 1997.
Yoshida, S. The vasopressin-oxytocin peptide system. In: Atlas of Neuroactive Substances and Their Receptors in the Rat. Edited by Tohyama, M. and K. Takatsuji, Oxford Press, New York, 1998, pp. 268-279.
Yuan, Z.F. Stimulatory effects of oxytocin on the activity of tuberoinfundibular dopaminergic neurons. Master Thesis, Institute of Physiology, National Yang-Ming University. 1995.
Yuan, Z.F., and J.T. Pan. Stimulatory effect of central oxytocin on tuberoinfundibular dopaminergic neuron activity and inhibition on prolactin secretion: neurochemical and electrophysiological studies. Endocrinology 137: 4120-4125, 1996.
Zaborszky, L., and G.B. Makara. Intrahypothalamic connections: an electron microscopic study in the rat. Exp. Brain Res. 34: 201-215, 1979.
Zerbe, R.L., and M. Palkovits. Changes in the vasopressin content of discrete brain regions in response to stimuli for vasopressin secretion. Neuroendocrinology 38: 285-289, 1984.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top