跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹雅馨
研究生(外文):Ya-Hsin
論文名稱:氯黴素和玉米赤黴烯酮之專一性抗體生產及快速檢測方法之開發
論文名稱(外文):Production of antibodies and development of ELISA and gold nanoparticle immunostrip for chloramphenicol and zearalenone
指導教授:余豐益
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:72
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
小分子毒素泛指所有分子量小於 5000的毒素,此類毒素在日常生活中分佈十分廣泛,容易因誤食而危害身體健康,本研究主題為氯黴素 (Chloamphenicol; CAP) 與玉米赤黴烯酮 (Zearalenone ; ZEA),我們期望藉由建立一套有效檢測氯黴素及玉米赤黴烯酮的方法,降低因誤食危害身體健康的機率。氯黴素為一廣效性抗生素,常用於治療動物細菌性感染,但食用過量會造成骨髓生成不良等疾病,為了避免人類誤食藥物殘留的食物,我們製備對氯黴素具有專一性的多株抗體,並且建立直接競爭型酵素連結免疫吸附分析法 (Competitive direct enzyme-linked immunosorbent assay ; cdELISA) 和非直接競爭型酵素連結免疫吸附分析法 (Competitive indirect enzyme-linked immunosorbent assay ; ciELISA),及以奈米金粒子為標記物的快速免疫層析試紙分析法,藉由上述分析方式快速的從食品內檢測氯黴素殘留量,在cdELISA、 ciELISA及快速免疫層析試紙分析法中,偵測限制量分別為0.071、0.032 與 10 ng/ml。玉米赤黴烯酮為一種常見於穀物的黴菌毒素,具有性荷爾蒙的功能,養殖場的豬隻吃到帶有玉米赤黴烯酮的飼料會導致母豬有子宮腫脹、流產與不孕,而在公豬則會有睪丸萎縮與乳腺增大等症狀,這些症狀嚴重影響養殖豬場上的經濟效益,因此我們製備對玉米赤黴烯酮具有專一性的多株抗體,並且建立 cdELISA、 ciELISA 及快速免疫層析試紙分析法,其偵測限制量分別為 0.014、 0.086 與 1 ng/ml。研究結果顯示本實驗所製備的多株抗體可有效偵測氯黴素及玉米赤黴烯酮,並且成功建立快速且專一性高的偵測方法,可用於快速檢測食品中氯黴素及玉米赤黴烯酮。

Antibiotics and mycotoxins are both low-molecular-weight nonimmunogenic toxins, such toxins widely distributed in our daily life,which are frequently found in food and feed. This study focused on chloramphenicol (CAP) and zearalenone (ZEA), and developed an efficient method to detect the toxin. Chloramphenicol (CAP) is a prescription antibiotics commonly used to treat more serious bacterial infections on human and animal, but excessive use will lead to inhibit human bone marrow hematopoietic function. For detecting the level of CAP in foods, polyclonal antibody for CAP was produced in our current studies. A competitive direct enzyme-linked immunosorbent assay (cdELISA), a competitive indirect ELISA (ciELISA) and gold nanoparticle immunochromatographic strip were used for detecting the CAP residues in foods. The detection limit of CAP in the cdELISA, ciELISA and gold nanoparticle immunochromatographic strip were found to be 0.071, 0.032 and 10 ng/ml, respectively. Zearalenone is a mycotoxin commonly in corn and has an estrogenic and anabolic activity. Its major effects are on reproduction, including reproductive organs and function, leading to hyperestrogenism. It is dramatic intluenced on farm pigs to ingest zearalenone. Eating feed containing zearalenone, the sow will be swell uterus, abortion and infertility; the boar will be testicular atrophy and increased breast. These symptoms seriously affect the economic and ecological in farms. A cdELISA、ciELISA and gold nanoparticle immunochromatographic strip were used for detecting the ZEA residues in foods. The detection limit in the of ZEA cdELISA, ciELISA and gold nanoparticle immunochromatographic strip were found to be 0.014, 0.086 and 1 ng/ml, respectively. This immunochromatographic strip provides a rapid and sensitive detection method that can determine the level of CAP and ZEA in the food products.

目錄
(Index)
中文摘要 ………………………………………… 1
英文摘要 ………………………………………… 2
緒論 ……………………………………………… 3
材料與方法 ……………………………………… 10
結果 …………………………………………….. 24
討論 ……………………………………………... 30
圖表 ……………………………………………… 40
參考文獻 ………………………………………… 56
附錄 ……………………………………………… 61


Anomonous. (2003). Contaminated honey seized. FDA Consum 37, 6.
Ambekar, C.S., Cheung, B., Lee, J., Chan, L.C., Liang, R., and Kumana, C.R. (2000). Metabolism of chloramphenicol succinate in human bone marrow. Eur J Clin Pharmacol 56, 405-409.
Biselli, S., and Hummert, C. (2005). Development of a multicomponent method for Fusarium toxins using LC-MS/MS and its application during a survey for the content of T-2 toxin and deoxynivalenol in various feed and food samples. Food Addit Contam 22, 752-760.
Boyd, P.A., and Wittliff, J.L. (1978). Mechanism of Fusarium mycotoxin action in mammary gland. J Toxicol Environ Health 4, 1-8.
Byzova, N.A., Zvereva, E.A., Zherdev, A.V., Eremin, S.A., and Dzantiev, B.B. (2010). Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta 81, 843-848.
Caldwell, R.W., Tuite, J., Stob, M., and Baldwin, R. (1970). Zearalenone production by Fusarium species. Appl Microbiol 20, 31-34.
Chandler, J., Gurmin, T., and Robinson, N. (2000). "The Place of Gold in Rapid Tests," IVD Technology 6,no. 2:37-49.
Chu, F.S., Fan, T.S., Zhang, G.S., Xu, Y.C., Faust, S., and McMahon, P.L. (1987). Improved enzyme-linked immunosorbent assay for aflatoxin B1 in agricultural commodities. J Assoc Off Anal Chem 70, 854-857.
Chu, F.S., and Ueno, I. (1977). Production of antibody against aflatoxin B1. Appl Environ Microbiol 33, 1125-1128.
Chun, H.S., Choi, E.H., Chang, H.J., Choi, S.W., and Eremin, S.A. (2009). A fluorescence polarization immunoassay for the detection of zearalenone in corn. Anal Chim Acta 639, 83-89.
Czeizel, A.E., Rockenbauer, M., Sorensen, H.T., and Olsen, J. (2000). A population-based case-control teratologic study of oral chloramphenicol treatment during pregnancy. Eur J Epidemiol 16, 323-327.
Ehrlich J, Bartz QR, Smith RM, Joslyn DA, and PR., B. (1947). Chloromycetin, a New Antibiotic From a Soil Actinomycete. Science.
Faulk, W.P., and Taylor, G.M. (1971). An immunocolloid method for the electron microscope. Immunochemistry 8, 1081-1083.
Gajecki, M. (2002). Zearalenone--undesirable substances in feed. Pol J Vet Sci 5, 117-122.
Gikas, E., Kormali, P., Tsipi, D., and Tsarbopoulos, A. (2004). Development of a rapid and sensitive SPE-LC-ESI MS/MS method for the determination of chloramphenicol in seafood. J Agric Food Chem 52, 1025-1030.
Hancock, R.E. (2005). Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis 5, 209-218.
Ishii, K., Sawano, M., Ueno, Y., and Tsunoda, H. (1974). Distribution of zearalenone-producing Fusarium species in Japan. Appl Microbiol 27, 625-628.
Jin, Y., Jang, J.W., Lee, M.H., and Han, C.H. (2006). Development of ELISA and immunochromatographic assay for the detection of neomycin. Clin Chim Acta 364, 260-266.
Kong, C.T., Holt, D.E., Ma, S.K., Lie, A.K., and Chan, L.C. (2000). Effects of antioxidants and a caspase inhibitor on chloramphenicol-induced toxicity of human bone marrow and HL-60 cells. Hum Exp Toxicol 19, 503-510.
Kouadio, J.H., Mobio, T.A., Baudrimont, I., Moukha, S., Dano, S.D., and Creppy, E.E. (2005). Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology 213, 56-65.
Kuiper-Goodman, T., Scott, P.M., and Watanabe, H. (1987). Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol 7, 253-306.
Lasztity, R., and Woller, L. (1975). [Toxin production by Fusarium species and occurrence of the toxins in agricultural products]. Nahrung 19, 537-546.
Minervini, F., Dell''Aquila, M.E., Maritato, F., Minoia, P., and Visconti, A. (2001). Toxic effects of the mycotoxin zearalenone and its derivatives on in vitro maturation of bovine oocytes and 17 beta-estradiol levels in mural granulosa cell cultures. Toxicol In Vitro 15, 489-495.
Paek, S.H., Lee, S.H., Cho, J.H., and Kim, Y.S. (2000). Development of rapid one-step immunochromatographic assay. Methods 22, 53-60.
Paepens, C., De Saeger, S., Sibanda, L., Barna-Vetro, I., Anselme, M., Larondelle, Y., and Van Peteghem, C. (2005). Evaluation of fumonisin contamination in cornflakes on the Belgian market by "flow-through" assay screening and LC-MS/MS analyses. J Agric Food Chem 53, 7337-7343.
Pestka, J.J. (1988). Enhanced surveillance of foodborne mycotoxins by immunochemical assay. J Assoc Off Anal Chem 71, 1075-1081.
Powell, D.A., and Nahata, M.C. (1982). Chloramphenicol: new perspectives on an old drug. Drug Intell Clin Pharm 16, 295-300.
Ronning, H.T., Einarsen, K., and Asp, T.N. (2006). Determination of chloramphenicol residues in meat, seafood, egg, honey, milk, plasma and urine with liquid chromatography-tandem mass spectrometry, and the validation of the method based on 2002/657/EC. J Chromatogr A 1118, 226-233.
Rumbull, C.A., and Moore, L.G. (1949). Treatment of a chronic typhoid carrier with chloromycetin. Br Med J 1, 943.
Sai, N., Chen, Y., Liu, N., Yu, G., Su, P., Feng, Y., Zhou, Z., Liu, X., Zhou, H., Gao, Z., et al. (2010). A sensitive immunoassay based on direct hapten coated format and biotin-streptavidin system for the detection of chloramphenicol. Talanta 82, 1113-1121.
Santos, S.M., Henriques, M., Duarte, A.C., and Esteves, V.I. (2007). Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples. Talanta 71, 731-737.
Saremi, H., and Okhovvat, S.M. (2006). Mycotoxin producing Fusarium species associated with plant disease on potato, wheat, corn and animal diseases in northwest Iran. Commun Agric Appl Biol Sci 71, 1175-1185.
Schaafsma, A.W., Nicol, R.W., Savard, M.E., Sinha, R.C., Reid, L.M., and Rottinghaus, G. (1998). Analysis of Fusarium toxins in maize and wheat using thin layer chromatography. Mycopathologia 142, 107-113.
Shen, J., Zhang, Z., Yao, Y., Shi, W., Liu, Y., and Zhang, S. (2006). A monoclonal antibody-based time-resolved fluoroimmunoassay for chloramphenicol in shrimp and chicken muscle. Anal Chim Acta 575, 262-266.
Shim, W.B., Dzantiev, B.B., Eremin, S.A., and Chung, D.H. (2009a). One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin a and zearalenone. J Microbiol Biotechnol 19, 83-92.
Shim, W.B., Kim, K.Y., and Chung, D.H. (2009b). Development and validation of a gold nanoparticle immunochromatographic assay (ICG) for the detection of zearalenone. J Agric Food Chem 57, 4035-4041.
Shim, W.B., Yang, Z.Y., Kim, J.Y., Choi, J.G., Je, J.H., Kang, S.J., Kolosova, A.Y., Eremin, S.A., and Chung, D.H. (2006). Immunochromatography using colloidal gold-antibody probe for the detection of atrazine in water samples. J Agric Food Chem 54, 9728-9734.
Smith, M.A., and Ryan, M.E. (1987). Cephalosporin therapy for childhood meningitis. Am Fam Physician 36, 185-192.
Spanjer, M.C., Rensen, P.M., and Scholten, J.M. (2008). LC-MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25, 472-489.
Tajik, H., Malekinejad, H., Razavi-Rouhani, S.M., Pajouhi, M.R., Mahmoudi, R., and Haghnazari, A. (2010). Chloramphenicol residues in chicken liver, kidney and muscle: a comparison among the antibacterial residues monitoring methods of Four Plate Test, ELISA and HPLC. Food Chem Toxicol 48, 2464-2468.
Thongrussamee, T., Kuzmina, N.S., Shim, W.B., Jiratpong, T., Eremin, S.A., Intrasook, J., and Chung, D.H. (2008). Monoclonal-based enzyme-linked immunosorbent assay for the detection of zearalenone in cereals. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25, 997-1006.
Tsao, Z.J., Liao, Y.C., Liu, B.H., Su, C.C., and Yu, F.Y. (2007). Development of a monoclonal antibody against domoic acid and its application in enzyme-linked immunosorbent assay and colloidal gold immunostrip. J Agric Food Chem 55, 4921-4927.
van de Water, C., Haagsma, N., van Kooten, P.J., and van Eden, W. (1987). An enzyme-linked immunosorbent assay for the determination of chloramphenicol using a monoclonal antibody. Application to residues in swine muscle tissue. Z Lebensm Unters Forsch 185, 202-207.
Vichyanond, P., Brown, Q., and Jackson, D. (1986). Acute bacterial conjunctivitis. Bacteriology and clinical implications. Clin Pediatr (Phila) 25, 506-509.
Visconti, A., and Pascale, M. (1998). Determination of zearalenone in corn by means of immunoaffinity clean-up and high-performance liquid chromatography with fluorescence detection. J Chromatogr A 815, 133-140.
Wang, L., Yang, H., Zhang, C., Mo, Y., and Lu, X. (2008). Determination of oxytetracycline, tetracycline and chloramphenicol antibiotics in animal feeds using subcritical water extraction and high performance liquid chromatography. Anal Chim Acta 619, 54-58.
Wang, L., Zhang, Y., Gao, X., Duan, Z., and Wang, S. (2010). Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin-streptavidin-amplified system. J Agric Food Chem 58, 3265-3270.
Wang, S., Quan, Y., Lee, N., and Kennedy, I.R. (2006). Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay. J Agric Food Chem 54, 2491-2495.
Wesongah, J.O., Murilla, G.A., Guantai, A.N., Elliot, C., Fodey, T., and Cannavan, A. (2007). A competitive enzyme-linked immunosorbent assay for determination of chloramphenicol. J Vet Pharmacol Ther 30, 68-73.
Zhang, S., Zhang, Z., Shi, W., Eremin, S.A., and Shen, J. (2006a). Development of a chemiluminescent ELISA for determining chloramphenicol in chicken muscle. J Agric Food Chem 54, 5718-5722.
Zhang, S., Zhou, J., Shen, J., Ding, S., and Li, J. (2006b). Determination of chloramphenicol residue in chicken tissues by immunoaffinity chromatography cleanup and gas chromatography with a microcell electron capture detector. J AOAC Int 89, 369-373.
Zhang, X., Liu, W., Logrieco, A.F., Yang, M., Ou-Yang, Z., Wang, X., and Guo, Q. (2011). Determination of zearalenone in traditional Chinese medicinal plants and related products by HPLC-FLD. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 1-9.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top