|
G. Alessandrini, A. Morassi, Strong unique continuation for the Lame system of elasticity, Comm. in P.D.E., 26, 1787-1810, 2001. S. Alinhac, Non-unicite pour des op$acute{e}$rateurs differentiels a caracteristiques complexes simples, Ann. Sci. Ec. Norm. Sup., 13, 385-393, 1980. S. Alinhac, M. S. Baouendi, Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Amer. J. Math., 102, 179-217, 1980. S. Alinhac, M. S. Baouendi, A counterexample to strong uniqueness for partial differential equations of Schrodinger's type, Comm. in P.D.E., 19, 1723-1733, 1994. D.D. Ang, M. Ikehata, D.D. Trong and M. Yamaoto, Unique continuation for a stationary isotropic Lame system with varaiable coefficients, Comm. in PDE., 23, 371-385, 1998. N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., 36, 235-249, 1957. N. Aronszajn, A. Krzywicki, J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds, Ark. Mat., 4, 417-453, 1962. P. Le Borgne, Strong uniqueness for fourth order elliptic differential operators, Indiana Univ. Math. J., 50 No. 1, 353-381, 2001. A.L. Bukhgeim, Introduction to the Theory of Inverse Problems, Nauka, Novosibrisk, 1988. A.L. Bukhgeim and M.V. Klibanov, Global uniqueness of a class of multidimensional inverse problems, English translation, Soviet Math. Dokl., 24, 244-247. Nauka, Novosibrisk, 1988. L. De Carli and T. Okaji, Strong unique continuation property for the Dirac equation, Publ. RIMS, Kyoto Univ., 35, 825-846, 1999. J. Cheng, Y.C. Hon M. Yamamoto, Stability in line unique continuation of harmonic functions : general dimensions, Inverse and Ill-Posed Problems., 6, 319-326, 1998. J. Cheng, M. Yamamoto, Unique continuation on a line for harmonic functions , Inverse Problems., 14, 869-882, 1998. J. Cheng, M. Yamamoto, Q. Zhou, Unique continuation on a hyperplane for wave equation, Chin. Ann. of Math., (20B)4, 385-392, 1999. J. Cheng, C.L. Lin, G. Nakamura, Unique continuation along curves and hypersurfaces for second order anisotropic hyperbolic systems with real analytic coefficients, Preprint. F. Colombini and C. Grammatico, Some remarks on strong unique continuation for the Laplace operator and its power, Comm. in P.D.E., 24, 1079-1094, 1999. H.O. Cordes, Uber die Bestimmtheit der Losungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Gottingen Math. Phys., 11, 239-258, 1956. B. Dehman and L. Robbiano, La propriete du prolongement unique pour un systeme elliptique: le systeme Lame, J. Math. Pures Appl., 72, 475-492, 1993. M. Eller and V. Isakov, Carleman estimates with two large parameters and applications, Proceedings of AMS summer research conference in Boulder, Colorado, July 1999, Contemporary Math., 268, 117-137, 2000. M. Eller, V. Isalov, G.Nakamura and D.Tataru, Uniqueness and stability in the Cauchy problem for Maxwell' and elastivity systems, Stud. Math. Appl., 31, 329-349, 2002. N. Garofalo and F.H. Lin, Monotonicity properties of variational integrals, Ap weights and unique continuation, Indiana Univ. Math. J., 35, 245-268, 1986. N. Garofalo and F.H. Lin Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math., 40, 347-366, 1987. C. Grammatico, A Result on Strong Unique Continuation for the Laplace Operator, Birkhauser Verlag, 1993. M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Comm. in P.D.E., 22, 1475-1491, 1997. A. Hoger, On the determination of residual stress in an elastic body, J. Elasticity, 16, 303-324, 1986. L. Hormander, Uniqueness theorems for second order elliptic differential equations, Comm. in P.D.E., 8, No. 1, 21-64, 1983. L. Hormander, ``The Analysis of Linear Partial Differential Operators I-IV', Springer-Verlag, Berlin, 1985. M. Ikehata, G. Nakamura, M. Yamamoto Uniqueness in inverse problems for the isotropic Lame system, J. Math. Sci. Univ. Tokyo, 5, 627-692, 1998. V. Isakov, A non-hyperpolic Cauchy problem for b c and its application to elasticity theory, Comm. Pure. Appl. Math., 39, 747-767, 1986. V. Isakov, Uniqueness of the continuation across a time-like hyperplane and related inverse problems for hyperbolic equations, Comm. P.D.E., 14, 465-478, 1989. V. Isakov, 'Inverse Source Problems', Mathematical Surveys and Monographs No. 34, Ams, Providence, 1990. V. Isakov, G. Nakamura, J.N. Wang Uniqueness and stability in the Cauchy problem for the elasticity system with residual stress, Preprint. D. Jerison, Carleman inequalities for the Dirac and Laplace operator and unique continuation, Adv. Math., 62, 118-134, 1986. D. Jerison, C. Kenig Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. Math. 121, 463-488, 1985. C. Kenig, A. Ruiz, C. Sogge, Sobolev inequalives and unique continuation for second order constant coefficient elliptic operators, Duke. Math., 55, 329-347, 1987. A. Khaidarov, Carleman estimates and inverse problems for second order hyperbolic equations, Math. USSR Sbornik, 58, 267-277, 1987. Y.M. Kim, MIT thesis, 1989. M. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8, 575-596, 1992. A. Krzywcki, J. Szarski A unique contiunation theorem for exterior differential forms on Riemannian manifolds, Ark. for Mat., 4, 417-453, 1962. M. Kubo, Identification of the potential term of the wave equation, Preceedings of the Japan Acad., 71, 174-176, 1995. V.D. Kupradze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, Vol. 25, North-Holland, 1979. N. Lerner, Uniqueness for an ill-posed problem, J. Diff. Eq., 71, 255-260, 1988. F. H. Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure. Appl. Math., XL, 347-366, 1987. C.S. Man, Hartig's law and linear elasticity with initial stress, Inverse Prob., 14, 313-319, 1998. K. Miller, Non-unique continuation for certain ODE's in Hilbert space and for uniformly parabolic and elliptic equations in self-adjoint divergence form, Springer Lecture Notes in Mathematics., vol. 316, 85-101, 1973. G. Nakamura and G. Uhlmann, Global uniqueness for an inverse boundary problem arising in elasticity, 118, 457-474, 1994. G. Nakamura and J.N. Wang, Unique continuation for the elasticity system with residual stress and its application, Siam J. Math. Anal. 35, no. 2, 304--317, 2003. G. Nakamura and J.N. Wang, Unique continuation for the two-dimensional anisotropic elasticity system and its application to inverse problems, submitted. M. Ohtsu, S. Yuyama, T. Imanaka, Theoretical treatment of acoustic emission sources in micorfracturing due to disbonding, J. Acoustical Soc. America, 82, 506-51, 1987. T. Okaji, Strong unique continuation property for time harmonic Maxwell equations, Bull. Acad. Pol. Sci., 11, 95-100, 1963. T. Okaji, Strong unique continuation property for elliptic systems of normal type in two independent variables, Tohoku Math. J. 54(2002), 309--318. T. Okaji, Strong unique continuation property for time harmonic Maxwell equations, J. Math. Soc. Japan 54(2002), no. 1, 89--122. Y. Pan, Unique continuation for Schrodinger operators with singular potentials, Comm. in PDE., 17, 953-965, 1992. A. Plis, On non-uniqueness in Cauchy problem for an elliptic second order differentialequation, J. Math. Soc. Japan, 54, No. 1, 89-122, 2002. L. Rachele, An inverse problem in elastodynamics: uniqueness of the wave speeds in the interior, J. Diff. Equ., 162, 300-325, 2000. R. Regbaoui, Strong uniqueness for second order differential operators, J. Diff. Eq., 141, 201--217, 1997. R. Regbaoui, Unique continuation for differential equations of Schrodinger's type, Comm. Anal. Geo., 7, 303-323, 1999. L. Robbiano, Theoreme d`unicite adapte au controle des solutions des problemes hyperboliques, Commnications in P.D.E.,16, 789-800, 1991. R. Robertson, Boundary identifiability of residual stress via the Dirichlet to Neumann map, Inverse Problems, 13, 1107-1119, 1997. C. Sogge, Strong uniqueness theorems for second order elliptic differential equations, Amer. J. Math., 112, 943-984, 1990. V. Vogeslang, Absence of embedded eigenvalues of the Dirac equation for long range potentials, Analysis, 7, 259-274, 1987. V. Vogeslang, On the strong continuation principle for inequalities of Maxwell type, Math. Ann., 289, 285-295, 1991. T.H. Wolff, "Fourier analysis and partial differential equations" , Miraflores de la Sierra, 99-128, 1992. T.H. Wolff, A counterexample in a Unique Continuation problem , Comm. Anal. Geom., 1, 79-102, 1994. T.H. Wolff, Note on counterexamples in strong unique continuation problems , Proc. Amer. Math. Soc., 114, 351-356, 1992. T.H. Wolff, Unique continuation for |u|< V|u| and related problems, Revista. Math. Iberoamericana., 6, 155-200, 1990. M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78, 65-98, 1999. M. Yamamoto, On an inverse problem of determining source terms in Maxwell's equations with a single measurement, Inverse problems, tomography, and image processing (Newark, DE, 1997), 241--256, Plenum, New York, 1998. N. Weck, Unique continuation for systems with Lame principal part, Math. Methods Appl. Sci., 24, 595--605, 2001.
|