跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉詩媛
研究生(外文):Shih-yuan Liu
論文名稱:一個伴隨經驗學習效果且具迴流的流線型機台最大完工時間最小化之研究
論文名稱(外文):An exploration of the multi-machine re-entrant flow shop scheduling problem with learning consideration to minimize the makespan
指導教授:吳進家吳進家引用關係林文欽林文欽引用關係
口試委員:陳瑞照李貴宜
口試日期:2013-06-24
學位類別:碩士
校院名稱:逢甲大學
系所名稱:應用統計研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:85
中文關鍵詞:多機流線型生產排程迴流式生產學習效果模擬退火法
相關次數:
  • 被引用被引用:2
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
在排程問題中,當操作人員在對產品進行生產加工時,隨著時間的增加重複處理類似工作而獲得經驗與技巧等能力時,工作進行的加工時間會因此縮短,將此現象稱為「學習效果(Learning Effect)」。
目前有關具學習效果的排程問題,大多著重在單機做討論,而實際生產環境中,排程多屬於多機線型流生產排程。因此本論文探討n個工作件在m台機器上迴流r次且具有經驗學習效果之排程問題,設定所有機台具有相同的學習效果,目標為最大完工時間最小化。
本論文對於小工作件數的問題,使用列舉法求得最佳排序作為近似解演算法之評估準則;對於大工作件數的問題則利用四個起始解演算法與模擬退火法結合來求得近似解。由模擬的結果發現,不論樣本數的大小,由JH+NEH演算法與模擬退火法結合之改善效果最佳。
第一章 緒論 6
第一節 研究背景與動機 6
第二節 研究方法 8
第三節 研究架構 9
第二章 文獻探討 11
第一節 排程定義與分類 11
第二節 學習效果 13
第三節 迴流式生產排程 16
第四節 模擬退火法SA 18
第三章 問題描述與解題方法 20
第一節 符號與問題描述 20
第二節 本文演算法與其求解步驟 26
一、強森演算法(Johnson’s algorithm): 26
二、NEH演算法: 27
三、模擬退火法(Simulated Annealing, SA) 28
四、倆倆交換(Pairwise exchange) 30
五、本論文演算法程序 32
第四章 資料模擬與分析 34
第一節 資料模擬 34
第二節 模擬結果 35
一、小工作件數 35
二、大工作件數 49
第五章 結論與未來研究方向 62
第一節 結論 62
第二節 未來研究方向 64
參考文獻. 65
1.Alfieri, A. (2009). Workload simulation and optimisation in multi-criteria hybrid flowshop scheduling: a case study. International Journal of Production Research, 47 (18), 5129-5145.
2.Biskup, D. (1999). Single-machine scheduling with learning considerations. European Journal of Operational Research, 115, 173-178.
3.Biskup, A. (2008). A state-of-the-art review on scheduling with learning effect. European Journal of Operational Research, 188, 315-329.
4.Chen, J.S. (2006). A branch and bound procedure for the re-entrant permutation flow-shop scheduling problem. The International Journal in Advanced Manufacturing Technology. 29, 1186-1193.
5.Chen, J.S., Pan, J.C. (2003). Minimization makespan in re-entrant permutation flow-shop. Journal of the Operational Research Society, 54, 642-653.
6.Chen, J.S., Pan, J.C. (2006). Integer programming models for the re-entrant shop scheduling problems. Engineering Optimisation, 38(5), 577-592.
7.Cheng, T. C. E., Lai, P. J., Wu, C. C., Lee, W. C. (2009). Single machine scheduling with sum-of-logarithm-processing-times-based learning considerations. Information Sciences, 179, 3127-3135.
8.Choi, S.W., Kim, Y.D. (2008). Minimizing makespan on an m-machine re-entrant flowshop. Journal of Computers and Operations Research, 35(5), 1684-1696.
9.Chu, F., Chu, C., Desprez. C. (2010). Series production in a basic re-entrant shop to minimize makespan or total flow time. Journal of Computers and Industrial Engineering archive, 58(2), 257-268.
10.Chung, Y.H., Tong, L.I. (2012). Makespan minimization for m-machine permutation flowshop scheduling problem with learning considerations. International Journal of Advanced Manufacturing Technology, 56(1), 355-367.
11.Conway, R.W., Maxwell, W.L., Miller, L.W. (1967). Theory of Scheduling. Dover Publications.
12.Graves, S.C., Meal, H.C., Strfek, D., Zeghmi, A.H. (1983). Scheduling of Reentrant Flow Shops. Journal of Operations Management, 3, 197-207.
13.Huang, X., Wang, M. Z., Wang, J.B. (2011). Single-machine scheduling with both learning effect and deteriorating jobs. Computer &; Industrial Engineering, 60, 750-754.
14.Janiak, A., Rudek, R. (2009). Experience based approch to scheduling problems with the learning effect. IEEE Transactions on system, Man, and Cybernetics, Part A: Systems and Humans, 39, 344-357.
15.Janiak, A., Rudek, R. (2010). A note on a makespan minimization problem with a multi-ability learning effect. Omega, 38, 213-217.
16.Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220, 671-680.
17.Kuo, W. H., Yang, D. L. (2006). Minimizing the makespan in a single machine scheduling problem with a time-based learning effect. Information Processing Letters, 97, 64-67.
18.Kuo, W. H., Yang, D. L. (2006). Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect. European Journal of Operation Research, 174, 1184-1190.
19.Koulamas, C., Kyparisis, G.J. (2007). Single-machine and two-machine flowshop scheduling with general learning function. European Journal of Operational Research 178, 402-407.
20.Lin, D., Lee, C.K.M. (2011). A review of the research methodology for the re-entrant scheduling problem. International Journal of Production Research, 49(8), 2221-2242.
21.Meilijson, I., Tamir, A. (1984). Minimizing flow time on identical processors with variable processing rate. Operations Research, 32(2), 440-448.
22.Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087-1092.
23.Mosheiov, G., Sidney, J.B. (2003). Scheduling with general job-dependent learning curves. European Journal of Operational Research, 147, 665-670.
24.Nawaz, M., Enscore, E.E., Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA: The International Journal of Management Science 11, 91-95.
25.Pinedo, M. (2008). Scheduling:Theory, Algorithms and System, Prentice Hall.
26.Rudek, A., and Rudek, R. (2013). Computational complexity of the single processor makespan minimization problem with release dates and job-dependent learning. Journal of Computers and Operations Research, 40(8), 2071-2082.
27.Uzsoy, R., Lee, C.Y., and Martin-Vega, L.A. (1992). A review of production planning and scheduling models in the semiconductor industry. I: System characteristics, performance evaluation and production planning. IIE Transactions, 24 (4), 47-60.
28.Wang, J.B. (2008). Single machine scheduling with past sequence dependent setup times and time dependent learning effect. Computers &; Industrial Engineering, 55(3),584-591.
29.Wang, J.B. (2008). Single-machine scheduling with general learning functions. Computers &; Mathematics with Applications, 56(8), 1941-1947.
30.Wang, L., Wang, J., Wang, D., Huang, X., Feng, E. (2009). Single-machine scheduling with a sum-of-processing-time based learning effect and deteriorating jobs. The International Journal of Advanced Manufacturing Technology , 45(3-4), 336-340.
31.Wang, J.B., Ji, P.,Cheng, T.C., Wang, C.D. (2010). Minimizing makespan in a two-machine flow shop with effects of deterioration and learning. Optimization Letters, 6(7), 1393-1409.
32.Wang, J.B., Sun, L., and Sun, L. (2010). Single machine scheduling with a learning effect and discounted costs. International Journal of Advanced Manufacturing Technology, 49, 1141-1149.
33.Wu, C.C., Lee, W.C. (2006). Two-machine flowshop scheduling to minimize mean flow time under linear deterioration. International Journal of Production Economics, 103, 572-584.
34.Wu, C.C., Lee, W.C. (2009). Single-machine Scheduling with Position-based and Sum-of-processing-time-based Learning Effects. Proceedings of the International MultiConference of Engineers and Computer Scientists, 2.
35.Wu, C. C., Yin, Y., Cheng, S. R. (2011). Some single-machine scheduling problems with a truncation learning effect. Computers and Industrial Engineering, 60, 790-795.
36.Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the aeronautical sciences , 3(4), 122-128.
37.鐘愉翔 (2011), “具有學習效果的流程式生產排程之最大完工時間與總完工時間最小化之研究”, 國立交通大學工業工程與管理學系博士論文
38.蘇鴻潤 (1997), “模擬退火法之參數選擇”, 國立台灣工業技術學院機械工程技術研究所碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊