|
1Fang, N., Lee, H., Sun, C. & Zhang, X. Sub–diffraction-limited optical imaging with a silver superlens. Science 308, 534-537 (2005). 2Pendry, J. B. Negative refraction makes a perfect lens. Physical review letters 85, 3966 (2000). 3Ni, X., Wong, Z. J., Mrejen, M., Wang, Y. & Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310-1314 (2015). 4Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nature nanotechnology, 1 (2018). 5Wang, S. et al. A broadband achromatic metalens in the visible. Nature nanotechnology 13, 227 (2018). 6邱國斌 & 蔡定平. 金屬表面電漿簡介. 物理雙月刊 28, 472-485 (2006). 7Maier, S. A. Plasmonics: fundamentals and applications. (Springer Science & Business Media, 2007). 8Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photonics 5, 349 (2011). 9Kuwata, H., Tamaru, H., Esumi, K. & Miyano, K. Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. Applied physics letters 83, 4625-4627 (2003). 10Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. (ACS Publications, 2003). 11Kottmann, J. P., Martin, O. J., Smith, D. R. & Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B 64, 235402 (2001). 12Bose, J. C. On the rotation of plane of polarisation of electric waves by a twisted structure. Proceedings of the Royal Society of London 63, 146-152 (1898). 13Veselago, V. G. The electrodynamics of substances with simultaneously negative values of and μ. Soviet physics uspekhi 10, 509 (1968). 14Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques 47, 2075-2084 (1999). 15Smith, D. R., Padilla, W. J., Vier, D., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical review letters 84, 4184 (2000). 16Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Optics express 14, 8247-8256 (2006). 17Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. science 315, 1686-1686 (2007). 18Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513-1515 (2009). 19Park, H. S., Kim, T.-T., Kim, H.-D., Kim, K. & Min, B. Nondispersive optical activity of meshed helical metamaterials. Nature communications 5, 5435 (2014). 20Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature nanotechnology 6, 107 (2011). 21O’Brien, K. et al. Predicting nonlinear properties of metamaterials from the linear response. Nature materials 14, 379 (2015). 22Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. science 334, 333-337 (2011). 23Aieta, F. et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano letters 12, 1702-1706 (2012). 24Sun, S. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano letters 12, 6223-6229 (2012). 25Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano letters 12, 5750-5755 (2012). 26Hsiao, H. H. et al. Integrated Resonant Unit of Metasurfaces for Broadband Efficiency and Phase Manipulation. Advanced Optical Materials, 1800031 (2018). 27Wu, P. C. et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano letters 17, 445-452 (2016). 28Chen, W. T. et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano letters 14, 225-230 (2013). 29Huang, Y.-W. et al. Aluminum plasmonic multicolor meta-hologram. Nano letters 15, 3122-3127 (2015). 30Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nature communications 4, 2807 (2013). 31Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano letters 12, 6328-6333 (2012). 32Ding, F., Wang, Z., He, S., Shalaev, V. M. & Kildishev, A. V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS nano 9, 4111-4119 (2015). 33Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano letters 12, 4932-4936 (2012). 34Ni, X., Ishii, S., Kildishev, A. V. & Shalaev, V. M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Science & Applications 2, e72 (2013). 35Khorasaninejad, M. et al. Achromatic metasurface lens at telecommunication wavelengths. Nano letters 15, 5358-5362 (2015). 36Chen, X. et al. Dual-polarity plasmonic metalens for visible light. Nature communications 3, 1198 (2012). 37Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628-633 (2016). 38Avayu, O., Almeida, E., Prior, Y. & Ellenbogen, T. Composite functional metasurfaces for multispectral achromatic optics. Nature communications 8, 14992 (2017). 39Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano letters 17, 1819-1824 (2017). 40Wang, S. et al. Broadband achromatic optical metasurface devices. Nature communications 8, 187 (2017). 41Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nature communications 7, 13682 (2016). 42Lippmann, G. Epreuves reversibles donnant la sensation du relief. J. Phys. Theor. Appl. 7, 821-825 (1908). 43Ives, H. E. Parallax panoramagrams made with a large diameter lens. JOSA 20, 332-342 (1930). 44Adelson, E. H. & Wang, J. Y. Single lens stereo with a plenoptic camera. IEEE transactions on pattern analysis and machine intelligence 14, 99-106 (1992). 45Ng, R. et al. Light field photography with a hand-held plenoptic camera. Computer Science Technical Report CSTR 2, 1-11 (2005). 46Lumsdaine, A. & Georgiev, T. Full resolution lightfield rendering. Indiana University and Adobe Systems, Tech. Rep (2008). 47Lumsdaine, A. & Georgiev, T. in Computational Photography (ICCP), 2009 IEEE International Conference on. 1-8 (IEEE). 48Georgiev, T. & Lumsdaine, A. in Computer Graphics Forum. 1955-1968 (Wiley Online Library). 49Zeller, N., Quint, F. & Stilla, U. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry. ISPRS Journal of Photogrammetry and Remote Sensing 118, 83-100 (2016). 50Zhu, S., Lai, A., Eaton, K., Jin, P. & Gao, L. On the fundamental comparison between unfocused and focused light field cameras. Applied optics 57, A1-A11 (2018). 51Kim, M.-S., Scharf, T. & Herzig, H. P. Small-size microlens characterization by multiwavelength high-resolution interference microscopy. Optics express 18, 14319-14329 (2010). 52Barker Jr, A. & Ilegems, M. Infrared lattice vibrations and free-electron dispersion in GaN. Physical Review B 7, 743 (1973). 53Goldys, E. et al. Analysis of the red optical emission in cubic GaN grown by molecular-beam epitaxy. Physical Review B 60, 5464 (1999). 54She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Science Advances 4, eaap9957 (2018). 55Tseng, J., Chen, Y., Pan, C., Wu, T. & Chung, M. Application of optical film with micro-lens array on a solar concentrator. Solar Energy 85, 2167-2178 (2011). 56Sacco, A. et al. Dye-sensitized solar cell for a solar concentrator system. Solar Energy 125, 307-313 (2016). 57Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nature Photonics 7, 527 (2013). 58Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nature communications 6, 7662 (2015). 59Di Lena, F. et al. in Quantum Technologies 2018. 106740H (International Society for Optics and Photonics).
|