|
[1] L. Verweyen, A. Tessmann, Y. Campos-Roca, M Hassler, A Bessemoulin, H. Tischer, W. Liebl, T. Grave, and V. Gungerich, “LMDS up- and down-converter MMIC,” in 2000 IEEE International Microwave Symposium Digest, vol. 3, pp. 1685-1688, June 2000. [2] G. Torregrosa-Penalva, A. Asensio-Lopez, F. J. Ortega-Gonzalez, J. Lluch-Ladron-de-Guevara, “Low cost Ka band transmitter modules for LMDS equipment mass production,” in 2001 IEEE International Microwave Symposium Digest, vol. 2, pp. 953-956, May 2001. [3] K. Ohata, T. Inoue, M. Funabashi, A. Inoue, Y. Takimoto, T. Kuwabara, S. Shinozaki, K. Maruhashi, K. Hosaya, and H. Nagai, “ Sixty-GHz-band ultra-miniature monolithic T/R modules for multimedia wireless communication systems,” IEEE Trans. on Microwave Theory and Tech., vol. 44, no. 12, pp. 2354-2360, Dec. 1996. [4] T. Ninomiya, T. Saito, Y. Ohashi, and H. Yatsuka, “60-GHz transceiver for high-speed wireless LAN system,” in 1996 IEEE International Microwave Symposium Digest, vol. 2, pp. 1171-1164, May 1996. [5] J. Mondal, K. Wong, D. Richardson, K. Vu, K. Peterson, G. Dietz, R. Haubenstricker, N. Calanca, L. Gluck, and S. Moghe, “77 GHz MMIC T/R module for diplex radar application in collision avoidance radar (CAR),” in 1998 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 181-184, Nov. 1998. [6] L. Raffaelli, E. Stewart, R. Quimby, J. Borelli, A. Geissberger, and D. Palmieri, ”A low cost 77 GHz monolithic transmitter for automotive collision avoidance systems,” in 1993 IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium Digest, pp. 63-66, June 1993. [7] N. S. Barker, and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. on Microwave Theory and Tech., vol. 46, no. 11, pp. 1881-1890, Nov. 1998. [8] J. B. Muldavin, and G. M. Rebeiz, “High-isolation CPW MEMS shunt switches-part 2: Design,” IEEE Trans. on Microwave Theory and Tech., vol. 48, no. 6, pp. 1053-1056, June 2000. [9] J. B. Muldavin, and G. M. Rebeiz, ”All-metal high-isolation series and series/shunt MEMS switches,” IEEE Microwave Wireless Comp. Lett., vol. 11, pp. 373-375, Sept. 2001. [10] M. Ulm, J. Schobel, M. Reimann, T. Buck, J. Dechow, R. Moller-Firdler, H.-P. Trah, and E. Kasper, “Millimeter-wave microelectromechanical (MEMS) switches for automotive surround sensing systems,” in Topic Meeting on Silicon Monolithic Integrated Circuits in RF Systems Digest, pp. 142-149, 2003. [11] G. M. Rebeiz, J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microwave Magazine, pp. 59-71, Dec. 2001. [12] E. Alekseev, and D. Pavlidis, “77 GHz high-isolation coplanar transmit-receive switch using InGaAs/InP PIN diodes”, in 1998 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 177 —180. [13] A. Klaassen, and J.-M. Dieudonne, “77 GHz monolithic MMIC Schottky- and PIN-diode switches based on GaAs MESFET and Silicon SIMMWIC Technology,” in 1995 IEEE International Microwave Symposium Digest, vol. 3, pp. 1631-1634, May 1995. [14] K. W. Kobayashi, L. Tran, A. K. Oki, and D. C. Streit, “A 50 MHz - 30 GHz broadband co-planar waveguide SPDT PIN diode switch with 45-dB isolation,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 56-58, Feb. 1995. [15] M. Case, M. Matloubian, and H.-C. Sun, “High-performance W-band GaAs PIN Diode single-pole-triple-throw switch CPW MMIC,” in 1997 IEEE International Microwave Symposium Digest, vol. 2, pp. 1047-1051, June 1997. [16] AP640R7-00, Product Data sheet, Skyworks Inc.. [17] AP038R5-00, Product Data sheet, Skyworks Inc.. [18] K. Maruhashi, H. Mizutani, K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. on Microwave Theory and Tech., vol. 48, no. 8, pp. 1313-1317, Aug. 2000. [19] S. G. Houng, T. Tsukii, M. J. Schindler, “60-70 dB isolation 2-19GHz MMIC switches,” in 1989 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 173 —176. [20] N. Imai, A. Minakawa, and H. Okazaki, “Novel high isolation FET switches,” IEEE Trans. on Microwave Theory Tech., vol. MTT-44, no. 5, pp. 685-691, May 1996. [21] G. L. Lan, D. L. Dunn, J. C. Chen, C. K. Pao and D. C. Wang, ”A high performance V-band monolithic FET transmit-receive switch,” in 1988 IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium Digest, pp. 99-101, June 1988. [22] H. Takasu, F. Sasaki, H. Kawasaki, H. Tokuda, and S Kamihashi, “W-band SPST transistor switches,” IEEE Microwave and Guided Wave Lett., vol. 6, pp. 315-316, Sept. 1996. [23] M. Madihian, L. Desclos, K. Maruhashi, K. Onda, M. Kuzuhara, “A sub-nanosecond resonant-type monolithic T/R switch for millimeter-wave systems applications,” IEEE Trans. on Microwave Theory and Tech., vol. 46, no. 7, pp. 1016-1019, July 1998. [24] D. L. Ingram, K. Cha, K. Hubbard, and R. Lai, “Q-band high isolation GaAs HEMT switches,” in 1996 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium., Orlando, FL, pp. 289-292, Nov. 1996. [25] M. Hieda, K. Nakahara, K. Miyaguchi, H. Kurusu, Y. Iyama, T. Takagi and S. Urasaki, “High-isolation series-shunt FET SPDT switch with a capacitor canceling FET parasitic inductance,” IEEE Trans. on Microwave Theory and Tech., vol. 49, no. 12, pp. 2453-2458, Dec. 2001. [26] D. C. W. Lo, H. Wang, B. R. Allen, G. S. Dow, K. W. Chang, M. Biedenbender, R. Lai, S. Chen, D. Yang, “Novel monolithic multifunctional balanced switching low-noise amplifiers,” IEEE Trans. on Microwave Theory and Tech., vol. 42, no. 12, pp. 2629-2634, Dec. 1994 [27] M. J. Schindler and A. Morris, “DC-40 GHz and 20-40 GHz MMIC SPDT switches,” IEEE Trans. on Microwave Theory Tech., vol. MTT-35, no. 12, pp. 1486-1493, Dec. 1987. [28] H. Mizutani, N. Funabashi, M. Kuzuhara, Y. Takayama, “Compact DC-60-GHz HJFET MMIC switches using ohmic electrode-sharing technology,” IEEE Trans. on Microwave Theory and Tech., vol. 46, no. 11, pp. 1597-1603, Nov. 1998. [29] H. Mizutani, Y. Takayama, “A DC-60 GHz GaAs MMIC switch using novel distributed FET,” in 1997 IEEE International Microwave Symposium Digest, vol. 2, pp. 439-442, June 1997. [30] H. Mizutani, Y. Takayama, “DC-110-GHz MMIC traveling-wave switch,” IEEE Trans. on Microwave Theory and Tech., vol. 48, no. 5, pp. 840-845, May 2000. [31] P. Bermkopf, M. Schindler, and A. Bertrand, “A high power K/Ka-band monolithic T/R switch,” in 1991 IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium Digest, pp.15-18, June 1991. [32] T. Shimura, Y. Mimino, K. Nakamura, “High isolation V-band SPDT switch MMIC for high power use,” in 2001 IEEE International Microwave Symposium Digest, vol. 1, pp. 245-248, May 2001. [33] J. Svedin, and A. Gustafsson, “A compact MMIC SPDT switch for 60 GHz applications,” in 2001 Asia-Pacific Microwave Conference Technical Digest, pp. 303-305, Taiwan, Taipei, Dec. 2001. [34] Y. Ayasli, “Microwave switching with GaAs FET,” Microwave J., vol. 25, no. 11, pp.61-74, 1982. [35] A. Gopinath, and J. B. Rankin, “GaAs FET RF switches,” IEEE Trans. Electron Devices, vol. ED-32, pp. 1272-1278, July 1985. [36] H. Y. Chang, H. Wang, Y. C. Wang, P. C. Chao, C. H. Chen, and D. C. Niu, “A 45-90 GHz BPSK modulator using HBT technology,” in 2002 Asia-Pacific Microwave Conference Technical Digest, pp. 60-62, Kyoto, Japan, Nov., 2002. [37] R. J. Gutmann, D. J. Fryklund, “Characterization of linear and nonlinear properties of GaAs MESFET’s for broad-band control applications,” IEEE Trans. on Microwave Theory and Tech., vol. MTT-35, no. 5 pp. 516-521, May 1987. [38] Advanced Design System User’s Guide, Agilent Technologies Inc. [39] TRW 0.15 m pHEMT Design Manual, TRW. [40] IC-CAP User’s Guide, Agilent Technologies Inc. [41] Application Note WIN-AN001RF001, WIN Semiconductors Corp.. [42] Ping-Yu Chen, “GaAs pHEMT device modeling and Ka-band MMIC amplifier design,” Master thesis, National Taiwan University, 2002. [43] G. Damrrine, A. Cappy, F. Heliodore and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. on Microwave Theory and Tech., vol. 36, no. 7, pp.1151-1159, July 1988. [44] E. W. Lin, and W. H. Ku, “Device considerations and modeling for the design of an InP-based MODFET millimeter-wave resistive mixer with superior conversion efficiency,” IEEE Trans. on Microwave Theory and Tech., vol. MTT-43, no. 8 pp. 1951-1959, Aug. 1995. [45] W. Curtice and M. Ettenberg, “A nonlinear GaAs FET model for use in the design of output circuit for power amplifier,” IEEE Trans. Microwave Theory and Tech., vol. MTT-33, pp. 1383-1394, Dec. 1985. [46] A. Materka and T. Kacprzak, “Computer calculation of large-signal GaAs FET amplifiers characteristics,” IEEE Trans. on Microwave Theory and Tech., vol. MTT-33, pp. 129-135, Feb. 1985. [47] Y. Tajima et al., “GaAs FET large signal model and its application to circuit design,” IEEE Trans. Electron Devices, vol. ED-28, pp. 171-175, Feb. 1981. [48] S. Maas and D. Nielsen, “Modeling of MESFET for intermodulation analysis of mixers and amplifiers,” IEEE Trans. on Microwave Theory and Tech., vol. 38, pp. 1964-1971, Dec. 1990. [49] I. Angelov, H. Zirath and N. Rorsman, “A new empirical model for HEMT and MESFET devices,” IEEE Trans. on Microwave Theory and Tech., vol. 40, pp. 2258-2268, Dec. 1992. [50] Sonnet user’s manual, Sonnet Software, Inc. [51] Microwave Office Manual, Applied Wave Research Inc. [52] David M. Pozar, Microwave Engineering, Wiley.
|