跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林坤佑
研究生(外文):Kun-You Lin
論文名稱:砷化鎵高電子移動率電晶體毫米波切換器之研製
論文名稱(外文):Design of Millimeter-Wave Switches Using GaAs HEMT
指導教授:王暉
指導教授(外文):Huei Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:120
中文關鍵詞:高電子移動率電晶體毫米波單晶微波積體電路切換器砷化鎵
外文關鍵詞:high electron mobility transistormillimeter wavemonolithic microwave integrated circuitswitchGaAs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文目的在於研究使用商用標準砷化鎵高電子移動率電晶體單晶微波積體電路製程來設計具有更佳特性之毫米波切換器。論文中使用了兩種改善電晶體之切換特性的方法設計毫米波單晶微波積體電路被動高電子移動率電晶體切換器。在本論文中對於被動電晶體的小訊號模型與非線性模型亦加以研究。論文中的非線性模型是結合了電阻性高電子移動率電晶體模型與壓控電流源,可用來模擬被動場效電晶體 (或高電子移動率電晶體)切換器之功率飽和的現象。
第一個用來改善被動場效電晶體的切換特性的方法是使用阻抗轉換電路。利用這個阻抗轉換電路,被動場效電晶體的開態與關態的阻抗可以同時被轉換到接近開路與接近短路。論文中利用被動場效電晶體的簡化模型來討論元件大小選取的問題。利用砷化鎵高電子移動率電晶體的製程,設計了Q頻段與V頻段單晶微波積體電路單刀雙擲切換器。在38 GHz到45 GHz的頻帶中,Q頻段單刀雙擲切換器之關態隔離度可達到30 dB,開態穿透損耗小於2 dB。在53 GHz到51 GHz的頻帶中,V頻段單刀雙擲切換器之關態隔離度可達到30 dB,開態穿透損耗小於4 dB。在毫米波頻段,使用阻抗轉換電路設計的切換器之隔離度優於傳統共振型切換器。
論文中也描述了關於利用傳導波原理來設計寬頻被動場效電晶體切換器。使用傳導波原理設計之切換器是結合並聯的關態電晶體與串聯的微帶線組成一人造的50 傳輸線。利用被動場效電晶體的簡化模型,論文中也針對傳導波切換器之設計 方法與設計參數加以討論。使用四分之一波長阻抗轉換器的15-80 GHz單刀雙擲切換器可以達到小於3.6 dB的穿透損耗與大於25 dB的隔離度。另一種寬頻切換器是使用串聯高電子移動路電晶體切換器與傳導波原理所設計,此種切換器之操作頻帶可以達到直流。本論文中設計了dc-80 GHz單刀單擲切換器與dc-60 GHz單刀雙擲切換器。這個單刀單擲切換器的穿透損耗小於3 dB,隔離度大於24 dB。而單刀雙擲切換器的穿透損耗小於3 dB,隔離度大於25 dB。
The purpose of this dissertation is to develop millimeter-wave switches employing commercial standard GaAs HEMT MMIC processes to achieve better performance. Two methods to improve the switching characteristics of the transistors were used to design the millimeter-wave MMIC passive HEMT switches. The small-signal and nonlinear models for passive FET switch design were investigated in this dissertation. The nonlinear model consists of resistive HEMT model and voltage-dependent current sources is developed, which can be used to simulate the power saturation of the passive FET (or HEMT) switches.
The first method for improving switching characteristics of the passive FET is using the impedance transformation network. By using the impedance transformation network, the on- and off-state impedances of a passive FET are transformed to near open and near short simultaneously, and a Q-band and a V-band MMIC SPDT switches are designed via this concept using GaAs PHEMT process. The device selection in circuit design using the simplified models of the passive FET is also discussed. The Q-band switch has a measured isolation better than 30 dB for the off-state and 2-dB insertion loss for the on-state from 38 GHz to 45 GHz, while the V-band switch demonstrates a measured isolation better than 30 dB for the off-state and 4-dB insertion loss for the on-state from 53 GHz to 61 GHz. The isolation of the switches using impedance transformation network outperforms the conventional resonant-type designs in millimeter-wave frequency range.
Wideband passive FET switches using traveling wave concept are also presented in this dissertation. The traveling-wave switch combines the shunt off-state transistors and series microstrip lines to form an artificial transmission line with 50- characteristic impedance. The design method and design parameters of the traveling-wave switches are discussed by using the simplified models of the passive FET. A 15-80 GHz SPDT switch in conjunction with quarter-wavelength impedance transformers demonstrates an insertion loss of less than 3.6 dB and an isolation of better than 25 dB. Another type of wideband switches were designed by using series HEMT switch and traveling-wave concept, and the operating band can be extended to dc. A dc-80 GHz SPST and a dc-60 GHz SPDT switches are also developed with compact chip size. From dc to 80 GHz, the insertion loss and isolation of the SPST switch are better than 3 dB and 24 dB, respectively. The SPDT switch has an insertion loss of better than 3 dB and an isolation of better than 25 dB from dc to 60 GHz.
CHAPTER 1. INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 4
1.3 Contributions 8
1.4 Chapter Outlines 9
CHAPTER 2. INTRODUCTION OF PASSIVE FET SWITCHES 11
2.1 Operation of Passive FET Switches 11
2.2 Methods to Improve the Switching Characteristics of Passive FET Switches 14
CHAPTER 3. DEVICE MODELING OF PASSIVE HEMTS 21
3.1 Device Characteristics and MMIC Process 22
3.2 DC Characteristics and Small-Signal S-parameters
Measurements 23
3.3 Small-Signal Model 24
3.4 Nonlinear Model 31
CHAPTER 4. FET SWITCHES USING IMPEDANCE-TRANSFORMATION NETWORKS 45
4.1 Design Principle 46
4.2 Comparison with Resonant-type Switches 47
4.3 Device Size Selection 56
4.4 SPDT Switches Design and Measurements 63
4.5 Summary 70
CHAPTER 5. WIDEBAND SWITCHES USING TRAVELING-WAVE CONCEPT 74
5.1 Design Principle 74
5.2 Circuit Design 76
5.3 15-80 GHz SPDT MMIC Switch 89
5.4 DC-60 GHz SPST and SPDT MMIC Switches 96
5.5 Summary 107
CHAPTER 6. CONCLUSIONS 108
REFERENCES 111
[1] L. Verweyen, A. Tessmann, Y. Campos-Roca, M Hassler, A Bessemoulin, H. Tischer, W. Liebl, T. Grave, and V. Gungerich, “LMDS up- and down-converter MMIC,” in 2000 IEEE International Microwave Symposium Digest, vol. 3, pp. 1685-1688, June 2000.
[2] G. Torregrosa-Penalva, A. Asensio-Lopez, F. J. Ortega-Gonzalez, J. Lluch-Ladron-de-Guevara, “Low cost Ka band transmitter modules for LMDS equipment mass production,” in 2001 IEEE International Microwave Symposium Digest, vol. 2, pp. 953-956, May 2001.
[3] K. Ohata, T. Inoue, M. Funabashi, A. Inoue, Y. Takimoto, T. Kuwabara, S. Shinozaki, K. Maruhashi, K. Hosaya, and H. Nagai, “ Sixty-GHz-band ultra-miniature monolithic T/R modules for multimedia wireless communication systems,” IEEE Trans. on Microwave Theory and Tech., vol. 44, no. 12, pp. 2354-2360, Dec. 1996.
[4] T. Ninomiya, T. Saito, Y. Ohashi, and H. Yatsuka, “60-GHz transceiver for high-speed wireless LAN system,” in 1996 IEEE International Microwave Symposium Digest, vol. 2, pp. 1171-1164, May 1996.
[5] J. Mondal, K. Wong, D. Richardson, K. Vu, K. Peterson, G. Dietz, R. Haubenstricker, N. Calanca, L. Gluck, and S. Moghe, “77 GHz MMIC T/R module for diplex radar application in collision avoidance radar (CAR),” in 1998 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 181-184, Nov. 1998.
[6] L. Raffaelli, E. Stewart, R. Quimby, J. Borelli, A. Geissberger, and D. Palmieri, ”A low cost 77 GHz monolithic transmitter for automotive collision avoidance systems,” in 1993 IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium Digest, pp. 63-66, June 1993.
[7] N. S. Barker, and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. on Microwave Theory and Tech., vol. 46, no. 11, pp. 1881-1890, Nov. 1998.
[8] J. B. Muldavin, and G. M. Rebeiz, “High-isolation CPW MEMS shunt switches-part 2: Design,” IEEE Trans. on Microwave Theory and Tech., vol. 48, no. 6, pp. 1053-1056, June 2000.
[9] J. B. Muldavin, and G. M. Rebeiz, ”All-metal high-isolation series and series/shunt MEMS switches,” IEEE Microwave Wireless Comp. Lett., vol. 11, pp. 373-375, Sept. 2001.
[10] M. Ulm, J. Schobel, M. Reimann, T. Buck, J. Dechow, R. Moller-Firdler, H.-P. Trah, and E. Kasper, “Millimeter-wave microelectromechanical (MEMS) switches for automotive surround sensing systems,” in Topic Meeting on Silicon Monolithic Integrated Circuits in RF Systems Digest, pp. 142-149, 2003.
[11] G. M. Rebeiz, J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microwave Magazine, pp. 59-71, Dec. 2001.
[12] E. Alekseev, and D. Pavlidis, “77 GHz high-isolation coplanar transmit-receive switch using InGaAs/InP PIN diodes”, in 1998 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 177 —180.
[13] A. Klaassen, and J.-M. Dieudonne, “77 GHz monolithic MMIC Schottky- and PIN-diode switches based on GaAs MESFET and Silicon SIMMWIC Technology,” in 1995 IEEE International Microwave Symposium Digest, vol. 3, pp. 1631-1634, May 1995.
[14] K. W. Kobayashi, L. Tran, A. K. Oki, and D. C. Streit, “A 50 MHz - 30 GHz broadband co-planar waveguide SPDT PIN diode switch with 45-dB isolation,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 56-58, Feb. 1995.
[15] M. Case, M. Matloubian, and H.-C. Sun, “High-performance W-band GaAs PIN Diode single-pole-triple-throw switch CPW MMIC,” in 1997 IEEE International Microwave Symposium Digest, vol. 2, pp. 1047-1051, June 1997.
[16] AP640R7-00, Product Data sheet, Skyworks Inc..
[17] AP038R5-00, Product Data sheet, Skyworks Inc..
[18] K. Maruhashi, H. Mizutani, K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. on Microwave Theory and Tech., vol. 48, no. 8, pp. 1313-1317, Aug. 2000.
[19] S. G. Houng, T. Tsukii, M. J. Schindler, “60-70 dB isolation 2-19GHz MMIC switches,” in 1989 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 173 —176.
[20] N. Imai, A. Minakawa, and H. Okazaki, “Novel high isolation FET switches,” IEEE Trans. on Microwave Theory Tech., vol. MTT-44, no. 5, pp. 685-691, May 1996.
[21] G. L. Lan, D. L. Dunn, J. C. Chen, C. K. Pao and D. C. Wang, ”A high performance V-band monolithic FET transmit-receive switch,” in 1988 IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium Digest, pp. 99-101, June 1988.
[22] H. Takasu, F. Sasaki, H. Kawasaki, H. Tokuda, and S Kamihashi, “W-band SPST transistor switches,” IEEE Microwave and Guided Wave Lett., vol. 6, pp. 315-316, Sept. 1996.
[23] M. Madihian, L. Desclos, K. Maruhashi, K. Onda, M. Kuzuhara, “A sub-nanosecond resonant-type monolithic T/R switch for millimeter-wave systems applications,” IEEE Trans. on Microwave Theory and Tech., vol. 46, no. 7, pp. 1016-1019, July 1998.
[24] D. L. Ingram, K. Cha, K. Hubbard, and R. Lai, “Q-band high isolation GaAs HEMT switches,” in 1996 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium., Orlando, FL, pp. 289-292, Nov. 1996.
[25] M. Hieda, K. Nakahara, K. Miyaguchi, H. Kurusu, Y. Iyama, T. Takagi and S. Urasaki, “High-isolation series-shunt FET SPDT switch with a capacitor canceling FET parasitic inductance,” IEEE Trans. on Microwave Theory and Tech., vol. 49, no. 12, pp. 2453-2458, Dec. 2001.
[26] D. C. W. Lo, H. Wang, B. R. Allen, G. S. Dow, K. W. Chang, M. Biedenbender, R. Lai, S. Chen, D. Yang, “Novel monolithic multifunctional balanced switching low-noise amplifiers,” IEEE Trans. on Microwave Theory and Tech., vol. 42, no. 12, pp. 2629-2634, Dec. 1994
[27] M. J. Schindler and A. Morris, “DC-40 GHz and 20-40 GHz MMIC SPDT switches,” IEEE Trans. on Microwave Theory Tech., vol. MTT-35, no. 12, pp. 1486-1493, Dec. 1987.
[28] H. Mizutani, N. Funabashi, M. Kuzuhara, Y. Takayama, “Compact DC-60-GHz HJFET MMIC switches using ohmic electrode-sharing technology,” IEEE Trans. on Microwave Theory and Tech., vol. 46, no. 11, pp. 1597-1603, Nov. 1998.
[29] H. Mizutani, Y. Takayama, “A DC-60 GHz GaAs MMIC switch using novel distributed FET,” in 1997 IEEE International Microwave Symposium Digest, vol. 2, pp. 439-442, June 1997.
[30] H. Mizutani, Y. Takayama, “DC-110-GHz MMIC traveling-wave switch,” IEEE Trans. on Microwave Theory and Tech., vol. 48, no. 5, pp. 840-845, May 2000.
[31] P. Bermkopf, M. Schindler, and A. Bertrand, “A high power K/Ka-band monolithic T/R switch,” in 1991 IEEE Microwave & Millimeter-wave Monolithic Circuits Symposium Digest, pp.15-18, June 1991.
[32] T. Shimura, Y. Mimino, K. Nakamura, “High isolation V-band SPDT switch MMIC for high power use,” in 2001 IEEE International Microwave Symposium Digest, vol. 1, pp. 245-248, May 2001.
[33] J. Svedin, and A. Gustafsson, “A compact MMIC SPDT switch for 60 GHz applications,” in 2001 Asia-Pacific Microwave Conference Technical Digest, pp. 303-305, Taiwan, Taipei, Dec. 2001.
[34] Y. Ayasli, “Microwave switching with GaAs FET,” Microwave J., vol. 25, no. 11, pp.61-74, 1982.
[35] A. Gopinath, and J. B. Rankin, “GaAs FET RF switches,” IEEE Trans. Electron Devices, vol. ED-32, pp. 1272-1278, July 1985.
[36] H. Y. Chang, H. Wang, Y. C. Wang, P. C. Chao, C. H. Chen, and D. C. Niu, “A 45-90 GHz BPSK modulator using HBT technology,” in 2002 Asia-Pacific Microwave Conference Technical Digest, pp. 60-62, Kyoto, Japan, Nov., 2002.
[37] R. J. Gutmann, D. J. Fryklund, “Characterization of linear and nonlinear properties of GaAs MESFET’s for broad-band control applications,” IEEE Trans. on Microwave Theory and Tech., vol. MTT-35, no. 5 pp. 516-521, May 1987.
[38] Advanced Design System User’s Guide, Agilent Technologies Inc.
[39] TRW 0.15 m pHEMT Design Manual, TRW.
[40] IC-CAP User’s Guide, Agilent Technologies Inc.
[41] Application Note WIN-AN001RF001, WIN Semiconductors Corp..
[42] Ping-Yu Chen, “GaAs pHEMT device modeling and Ka-band MMIC amplifier design,” Master thesis, National Taiwan University, 2002.
[43] G. Damrrine, A. Cappy, F. Heliodore and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. on Microwave Theory and Tech., vol. 36, no. 7, pp.1151-1159, July 1988.
[44] E. W. Lin, and W. H. Ku, “Device considerations and modeling for the design of an InP-based MODFET millimeter-wave resistive mixer with superior conversion efficiency,” IEEE Trans. on Microwave Theory and Tech., vol. MTT-43, no. 8 pp. 1951-1959, Aug. 1995.
[45] W. Curtice and M. Ettenberg, “A nonlinear GaAs FET model for use in the design of output circuit for power amplifier,” IEEE Trans. Microwave Theory and Tech., vol. MTT-33, pp. 1383-1394, Dec. 1985.
[46] A. Materka and T. Kacprzak, “Computer calculation of large-signal GaAs FET amplifiers characteristics,” IEEE Trans. on Microwave Theory and Tech., vol. MTT-33, pp. 129-135, Feb. 1985.
[47] Y. Tajima et al., “GaAs FET large signal model and its application to circuit design,” IEEE Trans. Electron Devices, vol. ED-28, pp. 171-175, Feb. 1981.
[48] S. Maas and D. Nielsen, “Modeling of MESFET for intermodulation analysis of mixers and amplifiers,” IEEE Trans. on Microwave Theory and Tech., vol. 38, pp. 1964-1971, Dec. 1990.
[49] I. Angelov, H. Zirath and N. Rorsman, “A new empirical model for HEMT and MESFET devices,” IEEE Trans. on Microwave Theory and Tech., vol. 40, pp. 2258-2268, Dec. 1992.
[50] Sonnet user’s manual, Sonnet Software, Inc.
[51] Microwave Office Manual, Applied Wave Research Inc.
[52] David M. Pozar, Microwave Engineering, Wiley.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊