跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭紹余
研究生(外文):Cheng, Shau-Yu
論文名稱:無線區域網路第一層與第二層核心技術之設計與實現
論文名稱(外文):Design and Implementation of WLAN Layer 1 and Layer 2 Core Techniques
指導教授:許騰尹
指導教授(外文):Hsu, Terng-Yin
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:182
中文關鍵詞:頻率域符號同步單載波頻率域等化器多輸入多輸出偵測無線網狀網路多模接收器頻率域接收器
外文關鍵詞:MIMO detectionFDESymbol timingFrequency domain receiverwireless mesh networkIEEE 802.11s
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
對於一個支持IEEE 802.11的接收器來說,最近以來的一個挑戰就是讓接收器架構越簡潔越好,譬如在無循環前綴單載波分組傳輸(non-cyclic prefix single-carrier block transmission, non-CP SCBT))、單輸入單輸出(single-input single-output, SISO)與多輸入多輸出(multi-input multi-output , MIMO)正交頻分複用(orthogonal frequency division multiplexing , OFDM)間進行有效率的硬體共享。基於頻率域類比數位轉換器(frequency-domain analog-to-digital conversion, FD-ADC)技術,本論文提出了一個多模接收器在頻率域上去處理所有的數位訊號,為了要在頻率域回復符號時序(symbol timing),本論文提出了一個採用了符號速率循序並用匹配濾波器(matched filter)結果去搜尋的頻率域符號同步器(FD symbol synchronizer),由模擬與實作結果顯示這個提出的頻率域符號同步器在低訊雜比下仍然很強健並且在VLSI實作上有很低的複雜度。而為了要讓等化器(equalizer)盡量簡潔,在無循環前綴單載波分組傳輸上,另外也提出了一個採用了單FFT架構以及球面解碼(sphere decoding)演算法的單載波頻率域等化器(SC-FDE),因此IEEE 802.11b的等化可共用MIMO-OFDM收發機中的硬體元件。 除此之外,我們還設計了一個事前修剪的技術去更進一步降低使用空間多工多輸入多輸出傳輸中信號偵測的複雜度,這個事前修剪的技術利用zero forcing (ZF)的偵測結果及Nq-QAM星座圖上多層次結構的特性去減少傳統K-best演算法的搜尋空間,因此這方法很適合同時擁有K-best及ZF偵測器的接收器。
除了上述的實體層問題外,因為無線高速網際網路(Internet)的存取的增加讓資料由存取網路(access network)轉傳到網際網路的高速無線後置網路(wireless backhaul network)的需求變的必要,而實務上更高的傳輸率要更高的基地台密度,因此使得在高速無線後置網路的佈署中,使用基礎網路的架構變的不符成本效益,在這情況下,IEEE 802.11s 無線網狀網路(wireless mesh network, WMN)提供一個吸引人的方法來快速且低成本的佈署,在本論文中研發了IEEE 802.11s 無線網狀網路並實際佈署了一個3x3的格狀拓樸網狀網路在實驗室及一個跨三層樓的建築物中,考量到無線網狀功能的可攜性,網狀網路的開發是在一個現成的商用無線晶片中的純軟體延伸,其中使用模組化軟體設計及不需要高成本硬體更動,為了要加強傳輸廣播類(broadcast-type)網狀網路控制封包的可信度,數種廣播策略在實驗室中進行路由重建率、可接受的延遲及通道使用率等評量,對於網狀網路的佈署上,我們的觀察指出RTS/CTS可以增加網路吞吐量達到87.5%,另外比起使用IEEE 802.11b/g,用802.11n傳輸可在多重資料流(multi-stream)或多點跳躍(multi-hop)的通訊上能達到更好的公平性(fairness),在本論文中總結的網狀網路的實驗觀察希望能提供給要佈署小型或中型室內IEEE 802.11s無線網狀網路的人一些導引。

Recently, one of the major challenge for a IEEE 802.11 compatible receiver is to make the receiver architecture as compact as possible, i.e., efficient hardware sharing between non-cyclic prefix single-carrier block transmission (non-CP SCBT), single-input single-output (SISO) and multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Based on frequency-domain analog-to-digital conversion (FD-ADC) technology, this dissertation presents a multi-mode receiver to handle all digital signals in frequency domain. A frequency-domain (FD) symbol synchronizer adopting a symbol-rate sequential search with simple matched filter detection is presented to recover symbol timing over the frequency domain. Simulation and implementation results show that the proposed FD symbol synchronizer is robust at low single-to-noise (SNR) and low complexity for VLSI implementations. To make equalizer as compact as possible, a single-carrier frequency-domain equalization (SC-FDE) for non-CP SCBT is proposed with single-FFT architecture and sphere decoding algorithm. Thus, the equalization of IEEE 802.11b can reuse the hardware components in the MIMO-OFDM modem. Moreover, a pre-pruning scheme is designed to further reduce the complexity of MIMO detection module for MIMO transmission using spatial multiplexing. The pre-pruning scheme reduces the search space of conventional K-best algorithm by using the zero forcing (ZF) detection result and the property of multilevel structure in Nq-QAM constellation. Hence, it is very attractive for the receivers equipping with both K-best and ZF detectors.
In spite the issues mentioned above in physical layer, a high rate wireless backhaul network transporting data between the access network and the wired Internet becomes essential due to the increasing of wireless high-speed Internet access. The infrastructure network becomes cost ineffective in the deployment of a high-rate wireless backhaul network due to the higher data rates requires much higher cell densities to realize in practice. Under this situation, IEEE 802.11s wireless mesh network (WMN) can provide an attractive approach for the fast and low cost deployment. This dissertation develops an IEEE 802.11s WMN and then deploys a testbed with 3-by-3 grid topology in both laboratory and field crossing three floors of the building. For the portability of mesh functions, the mesh development is a pure software extension for commercial off-the-shelf WLAN chipsets with modularized software design and without costly hardware modifications. To improve the transmission reliability of broadcast-type mesh control frames, several broadcasting strategies are evaluated based on the routing construction ratio, acceptable latency, and channel utilization in the laboratory testbed. For the WMN deployment, our observations indicate that RTS/CTS can improve throughput by up to 87.5%. Moreover, compared with the IEEE 802.11b/g, 802.11n achieves better fairness for multi-stream or multi-hop communications. The experimental observations of WMN deployment summarized in this dissertation are expected to provide guidance for the small or medium scale indoor IEEE 802.11s WMN.

Chapter 1 Introduction 1
1.1 Introduction of WLAN Radio technologies 4
1.2 Introduction of WLAN Relay-based Backhaul Network 6
1.3 Problem Statement and Literature Survey 9
1.4 Dissertation Overview 14
Part I PHY Layer: Three Key modules for Multi-mode FD receiver 17
Chapter 2 Symbol Rate Frame Synchronization with FD-ADC Architecture 18
2.1 Frequency-Domain Analog-to-Digital Conversion 23
2.1.1 Basic Concept 23
2.1.2 OFDM Receiver Based on FD ADC 25
2.1.3 Frequency Offset and Phase Noise 28
2.1.4 The Advantages and Disadvantages of FD ADC 29
2.2 System Assumptions and Problem Statement 31
2.2.1 System Assumptions 31
2.2.2 Matched Filter Detection in FD Receiver 33
2.2.3 Problem Statement 34
2.3 The Proposed FD Symbol Synchronization 36
2.3.1 Sequential Search 36
2.3.2 Complexity Reduction and Performance Enhancement 39
2.3.3 Algorithm Identification Step 43
2.4 Performance Evaluations 45
2.5 Architecture and Implementations 50
2.5.1 Low-Complexity Architecture 50
2.5.2 Semi-synchronous Clock Generator 54
2.5.3 Implementations Results 58
2.6 Summary 63
Chapter 3 FD Channel Estimation and Equalization with Single-FFT Architecture for SCBT System 65
3.1 System Assumptions 68
3.1.1 System Descriptions 68
3.1.2 Problem Statements 69
3.2 The Proposed Single-FFT Processes 70
3.2.1 Frequency-Domain Channel Estimator 70
3.2.2 Decision-Feedback Aliasing Canceller 72
3.3 Performance Evaluations 74
3.4 Implementation and Complexity 79
3.4.1 Sphere Decoder with SCBT Decoding 81
3.4.2 Detail VLSI Architecture 84
3.4.3 Complexity Summary 91
3.5 Summary 92
Chapter 4 A Cluster-based Pre-pruning Scheme for Low Complexity K-best Algorithm 93
4.1 Background 97
4.1.1 MIMO System Model 97
4.1.2 Multilevel Structure of the N-QAM Constellation 98
4.1.3 Conventional K-best Algorithm 100
4.2 The Proposed Algorithm 102
4.2.1 Pre-pruning via Cluster-Based Detection 103
4.2.2 Detail Matching with K-Best Algorithm 106
4.3 Simulation Results 109
4.4 Summary 114
Part II MAC Layer: Development/Deployment of an IEEE 802.11s System 115
Chapter 5 Design and Implementation of IEEE 802.11s Mesh 116
5.1 Network Architecture 118
5.2 Mesh Functions 119
5.3 Design and Implementation Issues of An IEEE 802.11s Mesh 124
5.3.1 Software Architecture 124
5.3.2 Transmission Strategies for Mesh Broadcast-Type Control Frames 127
5.4 Development/Testbed Platforms 129
5.5 Experiment of Broadcasting Strategies 130
5.5.1 Experiment configuration 130
5.5.2 Evaluation of Broadcasting Strategies 131
5.6 Summary 138
Chapter 6 Indoor Deployment of IEEE 802.11s Mesh Networks 140
6.1 Related Works: Effect of RTS/CTS and Rate Adaptation 143
6.2 IEEE 802.11s Testbed 147
6.2.1 Experiment Configuration 147
6.2.2 Experiment Methodology 150
6.3 Experimental Results 151
6.3.1 RTS/CTS 152
6.3.2 IEEE 802.11n vs. 802.11b/g 157
6.3.3 Beacon Interval 159
6.4 Lessons and Guidelines 162
6.5 Summary 167
Chapter 7 Conclusion 168
7.1 Summary 168
7.2 Future Work 171
Reference 174


[1] IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Nov. 1997. P802.11.
[2] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11b, 1999.
[3] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11a, 1999.
[4] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11g, 2003.
[5] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Enhancements for Higher Throughput, IEEE Std 802.11n, 2009.
[6] D. Falconer, and S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag., vol. 40, pp. 58-66, Apr. 2002.
[7] Z. Wang, X. Ma, and G. B. Giannakis, “OFDM or single-carrier block transmissions?,” IEEE Trans. Commun., vol. 52, pp. 380-394, March 2004.
[8] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless Mesh Networks: A Survey,” Comp. Net., vol. 47, no. 4, 2005, pp. 445–87.
[9] R. Bruno, M. Conti, and E. Gregori, “Mesh Networks: Commodity Multihop Ad Hoc Networks,” IEEE Commun. Mag., vol. 43, no. 3, Mar. 2005, pp. 123–31.
[10] Y-D. Lin and Y-C. Hsu, “Multihop Cellular: A New Architecture for Wireless Communications,” in Proc. IEEE INFOCOM, vol.3, no., pp.1273-1282 vol.3, 26-30 Mar 2000.
[11] J. Bicket et al., “Architecture and Evaluation of an Unplanned 802.11b Mesh Network,” in Proc. ACM Mobi-Com, 2005.
[12] A. Raniwala and T. Chiueh, “Architecture and Algorithms for an IEEE 802.11-based Multi-Channel Wireless Mesh Network,” in Proc. IEEE INFOCOM, vol.3, no., pp. 2223- 2234 vol. 3, 13-17 March 2005.
[13] K. Ramachandran et al., “On the Design and Implementation of Infrastructure Mesh Networks,” in Proc. IEEE Wksp. Wireless Mesh Net., 2005.
[14] IEEE P802.11s/D2.03, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications — Amendment: Mesh Networking,” Nov. 2008.
[15] A. Baschirotto, R. Castello, F. Campi, G. Cesura, M. Toma, R. Guerrieri, R. Lodi, L. Lavagno, and P. Malcovati, "Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals," IEEE Circuits and Systems Magazine, vol.6, no.1, pp. 8- 28, 2006.
[16] T. Shono, Y. Shirato, H. Shiba, K. Uehara, K. Araki, M. Umehira, "IEEE 802.11 wireless LAN implemented on software defined radio with hybrid programmable architecture," IEEE Trans Wireless Commun., vol.4, no.5, pp. 2299- 2308, Sept. 2005
[17] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann Publishers, 3rd Edition, 2003.
[18] Shin-Yuan Wang, and Chia-Chi Huang, "On the architecture and performance of an FFT-based spread-spectrum downlink RAKE receiver," IEEE Trans. Veh. Tech., vol.50, no.1, pp.234-243, Jan 2001.
[19] P. K. Prakasam, M. Kulkarni, Xi Chen, Yu Zhuizhuan, S. Hoyos, J. Silva-Martinez, and E. Sanchez-Sinencio, "Applications of multipath transform-domain charge-sampling wide-band receivers," IEEE Trans. Circuits Syst. II, vol.55, no.4, pp.309-313, Apr. 2008.
[20] S. Hoyos, B. M. Sadler, and G. R. Arce, “Broad-band multicarrier communications receiver based on analog to digital conversion in the frequency domain,” IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 652–661, Mar. 2006.
[21] Gernot Hueber, and Robert Bogdan Staszewski, Multi-Mode / Multi-Band RF Transceivers for Wireless Communications: Advanced Techniques, Architectures, and Trends. Wiley-IEEE Press, November 2010.
[22] S. Hoyos, S. Pentakota,Yu Zhuizhuan,E.S.A. Ghany, Chen Xi, R. Saad, S. Palermo,J. Silva-Martinez, "Clock-Jitter-Tolerant Wideband Receivers: An Optimized Multichannel Filter-Bank Approach," IEEE Trans. Circuits Syst. I, vol.58, no.2, pp.253-263, Feb. 2011.
[23] S. Hoyos, and B. M. Sadler, “UWB mixed-signal transform-domain direct-sequence receiver,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3038-3046, Aug. 2007.
[24] J.-J. van de Beek, M. Sandell, and P. O. Borjesson, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans. Signal Process., vol. 45, no. 7, pp. 1800–1805, Jul. 1997.
[25] H. Minn, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp. 822-839, Jul. 2003.
[26] A. J. Coulston, “Maximum likelihood synchronization for OFDM using a pilot symbol: algorithms,” IEEE J. Sel. Areas Commun., vol. 19, no. 12, pp. 2486-2494, Dec. 2001.
[27] E. Sourour and G. E. Bottomley, “Effect of frequency offset on DS-SS acquisition in slowly fading channels,” in Proc. IEEE Wireless Communications and Networking Conf., vol. 2, New Orleans, LA, Sept. 1999, pp. 569–573.
[28] A. Fort, J.-W. Weijers , V. Derudder , W. Eberle and A. Bourdoux "A performance and complexity comparison of auto-correlation and cross-correlation for OFDM burst synchronization", in Proc. IEEE ICASSP, vol. 2, pp. 341 2003.
[29] F. Tufvesson, O. Edfors, and M. Faulkner, “Time and frequency synchronization for OFDM using PN-sequence preambles,” in Proc. IEEE VTC., vol. 4, pp. 2203–2207, 1999.
[30] K. W. Yip, Y. C. Wu, and T. S. Ng, “Timing-synchronization analysis for IEEE 802.11a wireless LANs in frequency-nonselective Rician fading environments,” IEEE Trans. Wireless Commun., vol. 3, pp. 387-394, Mar. 2004.
[31] E. G. Larsson, G. Liu, J. Li, and G. B. Giannakis, “Joint symbol timing and channel estimation for OFDM based WLANs,” IEEE Commun. Lett., vol. 5, no. 8, pp. 325-327, Aug. 2001.
[32] Y.-C. Wu, K.-W. Yip, T.-S. Ng and E. Serpedin, “Maximum-likelihood symbol synchronization for IEEE 802.11a WLANs in unknown frequency-selective fading channels,” IEEE Trans. Wireless Commun., vol. 4, pp. 2751, Nov. 2005.
[33] J. Terry, and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide, Indianapolis, Indiana., Sams, 2002.
[34] P.A. Dmochowski, and P.J. McLane, “Frequency domain equalization for high data rate multipath channels,” in Proc. IEEE Pacific Rim Conf., vol.2, pp.534~537, Aug., 2001.
[35] J.J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Process. Mag., vol.9, Issue 1, Jan., 1992.
[36] T. D. Chiueh and P. Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications. Wiley, September 2007.
[37] P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” in Proc. IEEE ISSSE, pp.295–300, Sept. 1998.
[38] X. Zhu and R. D. Murch, “Performance analysis of maximum likelihood detection in a MIMO antenna system,” IEEE Trans. Commun., vol. 50, pp. 187–191, Feb. 2002.
[39] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Trans. Inf. Theory, vol.45, no.5, pp.1639–1642, July 1999.
[40] Kwan-wai Wong; Chi-ying Tsui; Cheng, R.S.-K.; Wai-ho Mow; , "A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels," in Proc. ISCAS, vol.3, no., pp. III-273- III-276 vol.3, 2002.
[41] Zhan Guo, and Nilsson, P.; , "A VLSI architecture of the Schnorr-Euchner decoder for MIMO systems," in Proc. ISCAS, vol.1, no., pp. 65- 68 Vol.1, 2004.
[42] Mondal, S., Salama, K.N., and Eltawil, A., "On the VLSI Implementation of low complexity K-best MIMO decoders," in Proc. ICM, vol., no., pp.337-340, 2008.
[43] Higuchi, K.; Kawai, H.; Maeda, N.; Sawahashi, M.; , "Adaptive selection of surviving symbol replica candidates based on maximum reliability in QRM-MLD for OFCDM MIMO multiplexing," in Proc. GLOBECOM, vol.4, no., pp. 2480- 2486 Vol.4, 2004.
[44] L. Hideki et al., “Evaluating the Impact of RTS-CTS in OLPC’s XOs’ Mesh Networks,” in Proc. SBrT, 2007.
[45] D. Koutsonikolas, J. Dyaberi, P. Garimella, S. Fahmy, Y.C. Hu, “On TCP throughput and window size in a multihop wireless network testbed,” in Proc. WiNTECH07, Sep. 2007, Montreal, Quebec, Canada.
[46] Y. Sun, I. Sheriff, E.M. Belding-Royer, K.C. Almeroth, “An experimental study of multimedia traffic performance in mesh networks,” in Proc. WitMeMo, 2005
[47] K. Chebrolu, B. Raman, S. Sen, “Long-distance 802.11b links: performance measurements and experience,” in Proc. MOBICOM, 2006.
[48] D. Gokhale, S. Sen, K. Chebrolu, B. Raman, “On the feasibility of the link abstraction in (rural) mesh networks,” in Pro. INFOCOM, 2008, pp.61–65.
[49] J. Camp, J. Robinson, C. Steger, E. Knightly, “Measurement driven deployment of a two-tier urban mesh access network,” in Proc. ACM MobiSys, June 2006, pp. 96–109.
[50] A. Arjona, C. Westphal, J. Manner, A. Yla-Jaaski, S. Takala, “Can the current generation of wireless mesh networks compete with cellular voice?,” in Proc. Elsevier ComCom Journal, pp.1564-1578, vol. 31, Issue 8, May 2008.
[51] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE J., Solid-State Circuits, vol.40, no.7, pp. 1566-1577, July 2005.
[52] Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs): Amendment 2: Millimeter-Wave Based Alternative Physical Layer Extension, IEEE 802.15.3c, Oct. 2009.
[53] IEEE 802.11ad Task Group, 2010. [Online]. Available: http://www.ieee802.org/11/Reports/tgad update.htm
[54] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithm, and Applications, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
[55] B. O’Hara, and A. Petrick, IEEE 802.11 Handbook: A Designer’s Companion, IEEE Press, 2nd Edition, 2005.
[56] V. Erceg, et al., TGn channel models, IEEE 802.11-03/940r4, May, 2004.
[57] T. Y. Hsu, B. J. Shieh, and C. Y. Lee, “An all-digital phase-locked loop (ADPLL) based clock recovery circuits,” IEEE J. Solid-State Circuits, vol. 34, pp. 1063-1073, Aug. 1999.
[58] C. C. Chung and C. Y. Lee, “An all-digital phase-locked loop for high-speed clock generation,” IEEE J. Solid-State Circuits, vol. 38, pp. 347-351, Feb. 2003.
[59] M. Krstic, A. Troya, K. Maharatna, and E. Grass, "Optimized low-power synchronizer design for the IEEE 802.11a standard,” in Proc. ICASSP '03, vol.2, no., pp. II- 333-6 vol.2, 6-10, 2003.
[60] T.-H. Kim, and I.-C. Park, "Low-Power and High-Accurate Synchronization for IEEE 802.16d Systems," IEEE Trans. VLSI, vol.16, no.12, pp.1620-1630, Dec. 2008.
[61] H.-Y. Liu; C.-Y. Lee, "A Low-Complexity Synchronizer for OFDM-Based UWB System," IEEE Trans. Circuits Syst. II, vol.53, no.11, pp.1269-1273, Nov. 2006.
[62] B. M. Baas, "A low-power, high-performance, 1024-point FFT processor", IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 380 - 387, 1999.
[63] A. Chun, E. Tsui, I. Chen, H. Honary, and J. Lin, “Application of the Intel@ Reconfigurable Communication Architecture to 802.11a, 3G and 4G Standards,” in Proc. IEEE Symp. Emerging Technol., May, 2004. pp.659~662.
[64] J. Hoffman, D. A. Ilitzky, A. Chun, and A. Chapyzhenka, “Architecture of the Scalable Communications Core,” in Proc. IEEE Symp. Networks-on-Chip, 2007, pp. 40–52..
[65] J.H. Jang, H.C. Won, and G.H. Im, “Cyclic Prefixed Single Carrier Transmission with SFBC over Mobile Wireless Channels,” IEEE Signal Process, Lett., vol.13, no.5, pp.261~264, May, 2006.
[66] M. Morelli, L. Sanguinetti, and U. Mengali, “Channel Estimation for Adaptive Frequency-Domain Equalization,” IEEE Trans Wireless Commun., vol.4, no.5, pp.2508~2518, Sep., 2005.
[67] Y. Zhu, and K.B. Letaief, “Single Carrier Frequency Domain Equalization with Time Domain Noise Prediction for Wideband Wireless Communications,” IEEE Trans Wireless Commun, vol.5, no.12, pp.3548-3557, Dec. 2006.
[68] D. Falconer, “Frequency Domain Equalization for Single-Carrier Broadband Wireless Systems,” IEEE Commun. Mag., pp.58~66, April, 2002.
[69] Wang, X. Dong, P.H. Wittke, and S. Mo, “Cyclic Prefixed Single Carrier Transmission in Ultra-wideband Communications,” IEEE Trans Wireless Commun, vol.5, no.8, pp.2017~2021, Aug., 2006.
[70] N. Benvenuto, and S. Tomasin, “On the Comparison Between OFDM and Single Carrier Modulation with a DFE Using a Frequency-Domain Feedforward Filter,” IEEE Trans Commun, vol.50, no.6, pp.947~955, June, 2002.
[71] K.Wong, C. Tsui, R.-K. Cheng, and W. Mow, “A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels,” in Proc. IEEE ISCAS, vol. 3, pp.273~276, 2002.
[72] M. O. Damen, H. E. Gamal, and G. Caire, “On Maximum-Likelihood Detection and the Search for the Closest Lattice Point,” IEEE Trans Information, vol.49, no.10, pp.2389~2402 Oct., 2003.
[73] Sizhong Chen, Tong Zhang, and Yan Xin, “Relaxed K-Best MIMO Signal Detector Design and VLSI Implementation,” IEEE Trans VLSI, vol.15, no.3, pp.328-337, March 2007.
[74] K. Pahlavan, and A.H. Levesque, Wireless Information Networks, New York: Wiley, 1995.
[75] J. Terry, and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide, Indianapolis, Indiana., Sams, 2002.
[76] G. Ungerboeck, “Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Data-Transmission Systems,” IEEE Trans Commun., vol.22, no.5, pp.624~636, May, 1974.
[77] S. Lin, and D.J. Costello, Error Control Coding: Fundamentals and Applications, Prentice Hall, 1983.
[78] S.W. Gerstacker, C. Jonietz, and R. Schober, “Equalization for WLAN IEEE 802.11b,” in Proc. IEEE Int. Conf. Commun., vol.6, pp.20~24, June, 2004.
[79] K. Barman, and A.V. Malipatil, “ICI equalizer in a CCK based DSSS communication system,” in Proc. TENCN, vol. 4, pp.15~17, Oct. 2003.
[80] R. Pandey and M. L. Bushnell, “Architecture for variable-length combined FFT, DCT and MWT transform hardware for multi-mode Wireless system,” in Proc. IEEE Inter. Conf. Embedded Syst., Jan. 2007, pp. 121–126.
[81] IEEE P802.16e, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, P802.16Rev2/D2, Dec. 2007.
[82] I-Wei Lai; Ascheid, G.; Meyr, H.; Tzi-Dar Chiueh; , "Efficient Channel-Adaptive MIMO Detection Using Just-Acceptable Error Rate," IEEE Trans Wireless Commun., vol.10, no.1, pp.73-83, January 2011.
[83] Yugang Jia; Andrieu, C.; Piechocki, R.J.; Sandell, M., "Depth-First and Breadth-First Search Based Multilevel SGA Algorithms for Near Optimal Symbol Detection in MIMO Systems," IEEE Trans Wireless Commun., vol.7, no.3, pp.1052-1061, March 2008.
[84] G.A. Awater, A. van Zelst, and R. van Nee, “Reduced complexity space division multiplexing receivers,” in Proc. VTC, pp.11–15, May 2000.
[85] C. Perkins and E. Royer, “Ad-Hoc On-Demand Distance Vector Routing,” in Proc. Mobile Comp. Sys. Apps., 1999.
[86] M. Bahr, “Proposed Routing for IEEE 802.11s WLAN Mesh Networks,” in Proc. Int’l. Wksp. Wireless Internet, 2006.
[87] A. Doufexi et al., “A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless LAN Standards,” IEEE Commun. Mag., vol. 40, no. 5, May 2002, pp. 172–80.
[88] A. Kamerman and L. Monteban, “WaveLAN-II: A High-Performance Wireless LAN for the Unlicensed Band,” Bell Labs. Tech. J., 1997, pp. 118–33.
[89] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu, M. Singh, “Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols,” in Proc. WCNC, vol. 1663, 2005, pp. 1664–1669.
[90] T. Murakami, Y. Matsumoto, K. Fujii, Y. Yamanaka, “Effects of multipath propagation on microwave oven interference in wireless systems,” in Proc. Electromagnetic Compatibility, 2003, vol. 742, 2003, pp. 749–752.
[91] D. Eckhardt, P. Steenkiste, “Measurement and analysis of the error characteristics of an in-building wireless network,” in Proc. ACM SIGCOMM, Aug. 1996, pp. 243–254.
[92] S. Xu, T. Saadawi, “Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks?,” IEEE Commun. Mag., vol.39, no.6, pp.130-137, Jun 2001
[93] Y.-D. Lin, S.-L. Tsao, S.-L. Chang, S.-Y. Cheng, C.-Y. Ku, “Design issues and experimental studies of wireless LAN mesh,” IEEE Wireless Commun., vol.17, no.2, pp.32-40, April 2010.
[94] R. Jones, Netperf Homepage, in. <http://www.netperf.org>.
[95] M. Afanasyev, T. Chen, G.M. Voelker, A.C. Snoeren, “Analysis of a mixed-use urban wifi network: when metropolitan becomes neapolitan,” in Proc. of ACM SIGCOMM, 2008, pp. 85–98.
[96] S. Liese, D. Wu, P. Mohapatra, “Experimental characterization of an 802.11b wireless mesh network,” in Proc. of IWCMC, 2006, pp. 587–592.
[97] E. Borgia, F. Delmastro, “Effects of unstable links on AODV performance in real testbeds,” EURASIP Journal of Wireless Communication Network, 2007, pp.32–32.
[98] C.E. Perkins, E.M. Royer, “Ad-hoc on-demand distance vector routing,” in Proc. WMCSA, 1999, pp. 90–100.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top