跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇俊榮
論文名稱:常壓式電漿系統對有機薄膜電晶體表面之研究
論文名稱(外文):Surface-Treatment Effects on Organic Thin-Film Transistors by Atmospheric-Pressure Plasma Technology
指導教授:張國明
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:68
中文關鍵詞:常壓式電漿系統對有機薄膜電晶體表面之研究
外文關鍵詞:Surface-Treatment Effects on Organic Thin-Film Transistors by Atmospheric-Pressure Plasma Technology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
旋塗式有機薄膜電晶體有利於大面積且低成本的元件製作,因為有機薄膜電晶體的效能跟半導體與介電層的介面有很大的關係,所以此篇論文的研究目標是藉由化性控制聚合物與介電層之間的介面,並呈現有機薄膜電晶體的改良特性.而因為二氧化矽的特性可被掌握且介面改質容易,在此我們選擇熱氧化方式的二氧化矽作為我們的介電層.使用六甲基二矽氮烷對二氧化矽絕緣層進行表面處理來製作高規則度聚(3-烷基�囮h)為材質之薄膜電晶體.經由六甲基二矽氮烷的自組裝層所處理的氧化層介面, P3HT薄膜電晶體將獲得明顯的改善.我們將使用常壓式電漿來實現介面處理.而常壓電漿系統是一種可以將製程溫度操控於120度以下,並可工作於大氣壓力下.在本文可以觀察這些表面處理過後的效應.處理過後的臨界電壓可被降至-10伏特以內,載子遷移率也提昇15倍以上而達到0.02-0.03 cm2/Vs.在本文中,使用常壓式電漿系統確實提供執行表面處理的技術以獲得低溫高效率的有機薄膜電晶體元件.
Organic thin film transistors made by Spin-Coating method with solution processable conjugated polymers have potentila advantages for fabricating low-cost, large area devices. Because OTFT performance depends strongly on the interface of semiconductor and dielectric layer. The purpose of this work is to show that improved characteristics of P3HT-based OTFT are obtained by controlling the chemistry of the dielectric/polymer interface. We chose to use thermal SiO2 as the dielectric because of its well-characterized properties and ease of chemical modification. The characteristics of thin-film transistor (TFT) fabricated with high regioregularity poly(3-hexylthiophene) (rr-P3HT). P3HT can be improved significantly by modify the surface of SiO2 with hexamethyldisilazane (HMDS) self-assembled monolayer. Before deposition of active layer, the surface modification can be carried out by means of atmospheric-pressure plasma technology (APPT). APPT is new process that can be operated in atomspheric and low temperature ambient. Processes of APPT are below 120°C and at atmospheric pressure. The effects of surface treatment of SiO2 on electric characteristics of OTFTs were investigated. After surface treatment, the field-effect transistor has a threshold voltage within -10V and a field-effect mobility of 0.02-0.03 cm2/Vs which is 15-fold improvement over the mobility on bare silicon oxide. This study suggests an interesting direction for preparation of high-performance OTFTs with high efficiency and low temperature of surface treatment process by APPT.
Contents

Chinese Abstract…………………………………………………………………….i
English Abstract…………………………………………………………………….iii
Acknowledgement…………………………………………………………………..v
Contents……………………………………………………………………………..vi
Table Captions……………………………………………………………………...vii
Figure Captions…………………………………………………………………….viii

Chapter 1 Introduction……………………………………………………………...1
1.1 General Background and Motivation…………………………..………. …...1
1.2 Thesis Organization…………………...……………………………………..3
Chapter 2 Experiment…………..………………………………….………………..6
2.1 Introduction of Poly(3-hexylthiophene)P3HT…..……………...……………6
2.1.1 The Molecular structure of P3HT…………………………………… 6
2.1.2 Conduction Mechanism………………………………………………7
2.2 Solution processed deposition……..………………………………………...7
2.2.1 Methods of OTFTs fabricates………………………………...……....8
2.2.2 The Motivation for Spin-Coat……………………………….……….9
2.2.3 Effect of Polymer Morphology and solvents………………………..10
2.3 Contact Resistance of P3HT OTFT...………………………………………11
2.4 Operation of Organic Thin Film Transistors………………………………..12
Chapter 3 Influence of APPT for OTFT………...…………………………...……22
3.1 Introduction of APPT……………………………………….………………22
3.1.1 Introduction of plasma………………………………………………22
3.1.2 Applications of APPT……………………………………………….23
3.1.3 Surface modification by plsama………………………………………23
3.2 Fabrication of OTFT..……………………………….………......………….26
3.3 Determination of Thershold voltage and Mobility…..……………………...27
3.4 Results and discussion…………………………………………...………….28
3.4.1 The influence of Spin speed for OTFT……………………………….28
3.4.2 The influence of APPT………………………………………………..29
3.4.3 Another methods of HMDS-treated SiO2...………………………......31
Chapter 4 Conclusions and Future work..………………………………………...61
4.1 Conclusions....................................................................................................61
4.2 Future work....................................................................................................62
4.2.1 An in-situ passivation layer for protecting the P3HT film...................62
4.2.2 A new method to deposit P3HT thin film.............................................62
4.2.3 Thermal stability of P3HT OTFT..........................................................63
4.2.4 New gate insulator materials for P3HT OTFT......................................63

Reference....................................................................................................................64
References

[1] C. J. Drury, C. M. Mutsaers, C. M. Hart, M. Matters and D. M. de
Leeuw: Appl. Phys. Lett. 73 (1998) 108.

[2] M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening,
C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo,
L. Jia, L. H. Klauk and T. N. Jackson: IEEE Electron Device Lett. 21
(2001) 534.

[3] W. Fix, A. Ullmann, J. Ficker and Clemens: Appl. Phys. Lett. 81
(2002) 1735.

[4] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson,
M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening,
J. Francl and J. West: Appl. Phys. Lett. 80 (2002) 1088.

[5] Y. Fujisaki, Y. Inoue, H. Sato, T. Kurita, S. Tokito and H. Fujikake:
Proc. Int. Display Workshop (2003) (IDW’03), p. 291.

[6] Y. Inoue, Y. Fujisaki, T. Suzuki, S. Tokito, T. Kurita, M. Mizukami,
N. Hirohata, T. Tada and S. Yagyu: Proc. Int. Display Workshop (2004)
(IDW’04), p. 355.

[7] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge
University Press, New York, (1998), p. 11.

[8] H. E. Katz, Z. Bao and S. L. Gilat: Acc. Chem. Res. 34 (2001) 359.

[9] Y. Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson: IEEE
Electron Device Lett. 18 (1997) 606.

[10] F. J. Mayer zu Heringdorf, M. C. Reuter and R. M. Tromp: Nature 412
(2001) 517.

[11] D. J. Gundlach, H. Klauk, C. D. Cheraw, C. C. Kuo, J. R. Huang and T. N. Jackson:
Electron Devices Meet., 1999, IEDM Tech. Dig.,Washington, D.C., (1999), p. 111.

[12] D. J. Cundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson and D. G. Schlom, IEEE
Electron Device Lett. 18,87,(1997)

[13] Chrisos D. Dimitrakopoulos, D, J. Mascaro, “Organic thin film transistors: A review
of recent advances “IBM J. RES. & DEV. 45(1), 11, (2001).

[14] Chrisos D. Dimitrakopoulos, Parick R. Malenfant, “Organic thin film transistor for
large area electronic” Adv. Mater. 2002, 14, No2, January 16

[15] Zhenan Bao,a) ananth Dodabalapur, and Andrew J.Lovinger ;”Soluble and
processable regioregular poly(3-hexylthiophene) for thin-film transistor
applications with high mobility” Appl. Phys. Lett., Vol. 69, No. 26, 23
December 1996

[16] Bao, Z.; Lovinger, a. J, “Soluble Regioregular Polythiophene Derivatives as
Semiconducting Materials for Field-Effect Transistors” Chen. Mate.(Article); 1999

[17] Sirringhaus, Henning; Tessler, Nir; et al. “Integrated optoelectronic devices based on
conjugated polymers”, Science, 06/12/98, Vol. 280 Issue 5370, p1741

[18] Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M .; Bechgaard, K.;
Langeveld-Voss, B. M. W.; et. al. “ Microstructure-mobility correlation
self-organised, conjugated polymer field-effect transistor” Synth. Metals, Vol.
111-112, pp.129-132

[19] Guangming Wang, Jmaes Swensen, Daniel Moses, and Alan J. Heeger, “Increased
mobility from regioregular poly(3-hexylthiophene) at different length scales,”
Nanothechnology, Vol.93, no. 10, pp.6137-6141, 2003

[20] H. Sirringhaus, P .J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W.
Langeveld-Voss, A. J. H. Spiering, R. A. J. Jannsen, E. W. Meijer, P. Herwig & D. M.
de Leeuw; “Two-dimensional charge transport in self-organized, high-moility
conjugated polymers” Nature, Vol401, 14/10/1999

[21] Chrisos D. Dimitralopoulos, Parick R. Malenfant, “ Organic thin film transistors for
large are electronics” Adv. Mater. 2002, 14, No2, January 16

[22] A. Assadi. C. Svensson, M. Willander, O. Inganas, “Field-effect mobility of
poly(3-hexylthiophene)” Appi. Phys. Lett. 53(3), 18 July 1988

[23] Howard E. Katz,* Joyce G. Laquindanum, and Andrew J. Lovinger ; “ Synthesis,
Solubility, and Field-Effect Mobility of Elongated and Oxa-Substituted a ,ω
-Dialkyl Thiophene Oligomers. Extension of “polar Intermediate” Synthetic
Strategy and Solution Deposition on Transistor Substrates” ; Chem, Mater. 1998,
10, 633-638.

[24] Giles Lloyd, Munira Raja, Ian Sellers, Naser Sedghi, Raffaclla Di Lucrezia, Simon
Higgins, Bill Eceleston ; “The properties of MOS structures using conjugated
polymers as the semiconductor” ; Microelectronic Engineering 59(2001) 323-328

[25] Cheng Yang, FRANCESCO p. Orfino, and Steven Holdcroft, “A Phenomenological
Model for Predicting Thermochromism of Regioregular and Nonregionregular
poly(3-hexylthiophenes)” Marcomolecules, Vol. 29, No. 20, 1996

[26] Amundson, Karl r.; Sapjeta, B. Joyce; Lovinger, Andrew J.; Bao, Zhenan “An in-plane
anisotropic organic semiconductor based upon poly(3-hexylthiophene)” Volume:
414, Issue: 1, July 1, 2002, pp. 143-149

[27] Hagen Llauk, Gunter Schmid, Wolfgang Radlik, Werner Weber, Lisong Zhou, Chris D.
Sheraw, Jonathan A.Nichols, Thomas N.jackson; “ Contact resistance in organic thin
film transistors”; Solid-State Electronics 47 (2003) 297-301

[28] Graciela B. Blanchet, C. R. Fincher, And Micheal Lefenfeld”Contact resistance in
organic thin film transistors” Appl. Phys. Lett, Vol 84, no. 2, 2004

[29] Giles Lloyd, Munira Raja, Ian Sellers, Naser Sedghi, Raffaella Di Lucrezia, Simon
Higgins, Bill Eccleston; “The properties of MOS structures using conjugated
polymers as the semiconductor” ; Microelectronic Engineering 59 (2001) 323-328

[30] J. H. Lin”The Analysis of Process Improvement and Reliability Characteristic of
Spin-On Orfanic TFT”, Graduate thesis

[31] Y. Chen, I. Shin and S. Xiao, Journal of Applied Physics, vol. 96, no3 1, 2004

[32] A.R. Brown, C. P. Tarrent, D.M. de Leeuw; “Field-effect transistor made from
solution-processd organic semiconductors” ; Synthetic Metals 88 (1997) 37-55

[33] R. H. Tredgold, ”Order in Thin Organic Films” Cambridge University Press,
1994
[34] A. Ulman, “An Introduction to Ultrathin Organic Films: From
Langmuir-Blodgett to Self-Assembly”, Academic press, New York,1991

[35] R.F. Gould (Ed.), “Contact Angle, Wettability and Adhesion”, Proceeding
of the 144th Meeting of the American Chemical Society, Vol.43, Washington,
DC, 1964

[36] R.J. Good, “Contact angle wetting and adhesion: a critical review”, in:K.L.
Mimal (Ed.), Contact angle, Wettability and Adhesion, USP, The Netherlands,
1993, pp. 3–36.

[37] H. Klauk, D.J. Gundlach, J.A. Nichols, C.D. Sheraw, M. Bonse, T.N.
Jackson, Solid State Technol. 43 (3) (2000) 63.

[38] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic-
Devices Based On Conjugated Polymers,”Science 280, 1741 (1998).

[39] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated, High-Mobility
Polymer Field-Effect Transistors Driving Polymer Light-Emitting Diodes,”
Synth. Met. 102, 85, (1999).

[40] S. C. Lim, S. H. Kim, J. H. Lee, M. K. Kim, D. J. Kim, T. Z.,
“ Surface-treatment effects on organic thin-film transistors” Synth. Met.
148, 75-79 (2005).

[41] N. Karl in Organic Electronic Materials, Springer Series in Material Science,
Vol. 41, edited by R. Farchioni and G. Grosso ~Springer, Berlin (2001).

[42] R. J., M. D., M. L., and M.F. Toney “Highly oriented crystals at the buried
interface in polythiphene thin-film transistors” nature materials, vol 5, March
(2006).

[43] C.D. Dimitrakopoulos, S. Purushothman, J. Kymissis, A. Callegari, J.M.
Shaw ”Low-Voltage Transistors on Plastic Comprising High-Dielectric
Constant Gate Insulator” 5 February, Vol.283 (1999)

[44] Carmen Bartic, Henri Jansen, Andrew Campitelli, Staf Borghs ”Ta2O5 as Gate
Dielectric Material for Low-Voltage Organic Thin-Film Transistors” Organic
Electronics 3(2002) 65-72
[45] Guangming Wang, Daniek Moses, Alan J. Heeger ”Poly(3-hexylthiophene)
filed-effect transistors with high dielectric constant gate insulator” Journal of
Applied Physics Vol95, Number 1 January 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top