跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪明輝
研究生(外文):Ming-Hui Hung
論文名稱:在腹腔手術期間比較以羥乙基澱粉輸液Voluven®和乳酸林格氏輸液在組織灌流和凝血功能的差異
論文名稱(外文):Comparison of Voluven® (6% Hydroxyethyl Starch, 130/0.4) and Lactated Ringer''s Solution on Perioperative Tissue Perfusion and Coagulation During Major Abdominal Surgery
指導教授:孫維仁孫維仁引用關係
指導教授(外文):Wei-Zen Sun
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:56
中文關鍵詞:重大腹部手術手術期間輸液管理羥乙基澱粉組織灌流凝血功能
外文關鍵詞:major abdominal surgeryintraoperative fluid managementhydroxyethyl starchtissue perfusioncoagulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1607
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
研究背景:重大腹腔手術患者尤其因為術前禁食,腸道準備,術中失血,手術創傷刺激水分的散失及麻醉造成的血管擴張影響等等因素,造成某種程度的體液缺失,需要更多的輸液給予。針對手術病患給予輸液治療,藉以維持足夠的血容量,可以保持血液循環的穩定,避免組織灌流不足的缺氧傷害。傳統的輸液治療有晶體輸液和膠體輸液的差別,手術當中的輸液管理使用何種輸液為佳則未有定論。膠體輸液因為可以保持血管內容積較高的滲透壓力,故有較佳的血容擴張效應,減少組織間隙的體液堆積,也認為能因此增進組織灌流;但膠體輸液中的羥乙基澱粉輸液(hydroxyethyl starch, HES)對於凝血功能的影響則為其最被關注的副作用之一。最新型的羥乙基澱粉輸液Voluven® (0.6% HES, 130/0.4)有較小的平均分子量和羥乙基化比率,其血容擴張效應對組織灌流和凝血功能的影響,即為本研究計畫的目標。
研究方法:在接受重大腹部手術的成年病患,隨機分成兩組分別給予Voluven® 或乳酸林格式輸液當作手術當中主要的維持輸液,輸液的速度快慢依據動脈血壓65 - 90 mmHg或中央靜脈壓力8 - 12 mmHg調整。組織灌流的差異分別在T0(誘導後輸液前基準值)、T1(手術開始)、T2(手術開始1小時)和T3(手術結束)等時間監測心律、動脈血壓、中央靜脈壓、心臟輸出量、心搏變異率及中央靜脈血氧濃度。凝血功能的差異分別在T0(誘導後輸液前基準值)、T4(15 mL/kg輸液後)和T5(基準值後24小時)抽血以全血凝血分析儀(Thrombelastography)檢驗。統計檢定方式以多變數分析(ANOVA)比較兩個組別尖的差異,以repeated measures ANOVA比較各個時間點的組織灌流參數與凝血功能參數差異。統計上的顯著差異為 p < 0.05。
研究結果:在40位接受治療並完成追蹤的病患中,兩個輸液組別在性別、年紀、身高、體重、手術種類、手術時間及術前血色素基礎值並無顯著差異。手術期間兩個組別分別輸注Voluven® 1269.2 ± 394.5 mL (HES group)和乳酸林格式輸液1787.9 ± 686.0 mL (LR group);總輸液量HES group為1498.1 ± 209.4 mL,LR group為2596.2 ± 328.1 mL,有顯著的統計差異(p < 0.001)。術中血液循環穩定度、心臟輸出及中央靜脈血氧濃度兩組則無顯著差異。手術失血量與排尿量則無顯著差異,但在LR group有較高的濃縮紅血球輸注(10 units vs. 0 unit, p = 0.047)。全血凝血分析儀檢測之凝血功能則顯示在Voluven® 15 mL/kg輸注之後,血栓形成時間(R值)縮短(8.8 ± 2.5 vs. 7.5 ± 1.8, p = 0.045),但血栓硬度(MA振幅)減弱(61.5 ± 8.5 vs. 55.9 ± 7.6, p = 0.034),Voluven®輸注對R值的影響可持續至24小時(8.8 ± 2.5 vs. 7.4 ± 1.5, p = 0.031)。
研究結論:在重大腹部手術期間,使用新劑型的6%羥乙基澱粉輸液Voluven®顯示和乳酸林格式輸液在組織灌流有相似的治療效果,但使用Voluven®輸液比乳酸林格式輸液有較佳的血容擴張效應,顯著地減少手術中的輸液總量。在凝血功能影響方面,雖對血栓形成時間及硬度有影響,但並沒有臨床上的意義而因此增加手術出血量或濃縮紅血球的輸注需求。試驗結果顯示,Voluven®可以安全地使用於重大腹部手術期間的輸液治療,作為有效的輸液管理選擇。
Abstract
Background: In major abdominal surgery, patients are easily suffered from absolute or relative intravascular volume deficits because of preoperative fasting, gastrointestinal preparation, perioperative bleeding, exposure evaporation, third-space losses, and vasodilation after anesthesia. Hypovolemia during surgery has been associated with intraoperative hemodynamic instability and tissue hypoperfusion. Therefore, adequate restoration of intravascular volume is important to fulfill the nutritive role of the circulation. The choice of the ideal fluid management still poses a clinical dilemma. Colloid fluids, such as hydroxyethyl starch (HES) preparations, are commonly used during surgery because of improved volume expansion effect to avoid of tissue edema and enhance tissue perfusion. However, the known adverse effect of hemostatic impairment associated with HES is concerned. The aim of the investigation was to assess the influence of a newly HES preparation (Voluven®, 6% HES, 130/0.4) on tissue perfusion and coagulation in patients undergoing major abdominal surgery, and to compare it with lactated Ringer’s solution (LR).
Methods: Forty adults patients undergoing elective major abdominal surgery was randomized to received either Voluven® or lactated Ringer’s solution to keep arterial blood pressure between 65 – 90 mmHg or central venous pressure between 8 -12 mmHg. Tissue perfusion parameters using heart rate, arterial blood pressure, central venous pressure, cardiac index, stroke volume index and central venous oxygen saturation were measured at T0 (baseline), T1 (start of surgery ), T2 (1 hour after start of surgery) and T3 (end of surgery). Coagulation parameters using thrombelastography were measured at T0 (baseline), T4 (after 15 mL/kg fluid transfused) and T5 (24 hours after baseline). Analysis of variance (ANOVA) was applied to detect the significance between groups and repeated measures ANOVA for significance within group. Significance level is p < 0.05.
Results: Baseline data were compatible in both groups, including sex, age, height, weight, type and time of procedures, and concentration of preoperative hemoglobin. A total intraoperative fluid administration were 1498.1 ± 209.4 mL and 2596.2 ± 328.1 mL in HES group and LR group, respectively (p < 0.001); including 1269.2 ± 394.5 mL of Voluven® (HES group) and 1787.9 ± 686.0 mL of LR (LR group). The parameters of tissue perfusion, such as hemodynamics and central venous oxygen saturation, did not differ significantly between the two groups. Intraoperative amount of blood loss and urine output were not significant but more red blood transfusion was needed to complete surgery in LR group than HES group (10 units vs. 0 units, p = 0.047). The kinetics of clot formation (clot formation time, R time) significantly increased after 15 mL/kg Voluven® transfused (8.8 ± 2.5 vs. 7.5 ± 1.8, p = 0.045) and lasted until 24 hours (8.8 ± 2.5 vs. 7.4 ± 1.5, p = 0.031). The MA amplitude decreased significantly after 15 mL/kg Voluven® (61.5 ± 8.5 vs. 55.9 ± 7.6, p = 0.034) and recovered to baseline after 24 hours.
Conclusion: Intraoperative intravascular volume replacement with the new HES preparation Voluven® was comparable with LR on tissue perfusion; however, Voluven® showed an improved volume expansion effect than LR. Although strength of clot was impaired after Voluven® replacement as detected by TEG, it did not result in clinically significant bleeding during surgery and hence in needs of blood transfusion. Voluven® may be considered as a safe and effective choice of colloid fluid in major abdominal surgery.
目 錄

中文摘要 i
英文摘要 iii
第一章 緒論 1
1.1. 背景 1
1.1.1. 輸液的目的 1
1.1.2. 手術病患的輸液需求 2
1.1.3. 體液分佈生理 3
1.1.4. 輸液的種類 5
1.2. 文獻回顧 5
1.2.1. 羥乙基澱粉輸液的特性 6
1.2.2. 羥乙基澱粉輸液對組織灌流的影響 7
1.2.3. 羥乙基澱粉輸液對凝血功能的影響 8
1.2.4. 羥乙基澱粉對凝血功能抑制機轉 9
1.2.4.1. 降低第八凝血因子與von Willebrand凝血因子濃度 9
1.2.4.2. 引起血小板功能抑制 10
1.2.5. 新一代的羥乙基澱粉對凝血功能影響的差異 10
1.3. 研究目的 11
第二章 研究方法與材料 19
2.1 研究對象 19
2.1.1 納入條件 19
2.1.2 排除條件 19
2.2 研究方法 19
2.2.1 研究設計 19
2.2.2 麻醉方式 20
2.2.3 輸液給予方式及分組 20
2.2.4 試驗數據紀錄 20
2.2.5 組織灌流監測 21
2.2.6 凝血功能監測 21
2.3 統計方法 22
第三章 結果 30
3.1 基本資料 30
3.2 手術期間輸液量及體液排出量 30
3.3 組織灌流參數結果 30
3.4 凝血功能檢驗結果 31
第四章 討論 36
4.1 組織灌流方面 36
4.2 凝血功能方面 39
第五章 展望 42
第六章 參考文獻 45
第七章 附錄 56
1.Boldt, J. New light on intravascular volume replacement regimens: what did we learn from the past three years? Anesthesia and Analgesia 2003; 97(6): 1595-1604.
2.Sinclair, S., James, S. and Singer, M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. British Medical Journal 1997; 315(7113): 909-912.
3.Marshall, J.C. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Critical Care Medicine 2001; 29(7 Suppl): S99-S106.
4.Deane, S.A., Gaudry, P.L., Woods, P., Cass, D., Hollands, M.J., Cook, R.J. and Read, C. The management of injuries--a review of deaths in hospital. Australian and New Zealand Journal of Surgery 1988; 58(6): 463-469.
5.Dellinger, R.P., Carlet, J.M., Masur, H., Gerlach, H., Calandra, T., Cohen, J., Gea-Banacloche, J., Keh, D., Marshall, J.C., Parker, M.M., Ramsay, G., Zimmerman, J.L., Vincent, J.L. and Levy, M.M. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Critical Care Medicine 2004; 32(3): 858-873.
6.Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., Peterson, E. and Tomlanovich, M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England Journal of Medicine 2001; 345(19): 1368-1377.
7.Practice parameters for hemodynamic support of sepsis in adult patients in sepsis. Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine. Critical Care Medicine 1999; 27(3): 639-660.
8.Shoemaker, W.C. and Reinhard, J.M. Tissue perfusion defects in shock and trauma states. Surgery, Gynecology and Obstetrics 1973; 137(6): 980-986.
9.Du, G.B., Slater, H. and Goldfarb, I.W. Influences of different resuscitation regimens on acute early weight gain in extensively burned patients. Burns 1991; 17(2): 147-150.
10.Shoemaker, W.C., Montgomery, E.S., Kaplan, E. and Elwyn, D.H. Physiologic patterns in surviving and nonsurviving shock patients. Use of sequential cardiorespiratory variables in defining criteria for therapeutic goals and early warning of death. Archives of Surgery 1973; 106(5): 630-636.
11.Shoemaker, W.C., Appel, P.L., Kram, H.B., Waxman, K. and Lee, T.S. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988; 94(6): 1176-1186.
12.Gan, T.J., Soppitt, A., Maroof, M., el-Moalem, H., Robertson, K.M., Moretti, E., Dwane, P. and Glass, P.S. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 2002; 97(4): 820-826.
13.Kapoor, P.M., Kakani, M., Chowdhury, U., Choudhury, M., Lakshmy and Kiran, U. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth 2008; 11(1): 27-34.
14.Dorrian, S. and Lim, M. Early goal-directed therapy in the emergency department. Emergency Medicine Australasia 2006; 18(2): 206-207.
15.Stauss, M.P. A new approach to an old foe: implementation of an early goal-directed sepsis treatment protocol. Journal of Emergency Nursing 2005; 31(1): 34-38.
16.Pearse, R., Dawson, D., Fawcett, J., Rhodes, A., Grounds, R.M. and Bennett, E.D. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Critical Care 2005; 9(6): R687-693.
17.Kehlet, H. and Bundgaard-Nielsen, M. Goal-directed perioperative fluid management: why, when, and how? Anesthesiology 2009; 110(3): 453-455.
18.Desborough, J.P. The stress response to trauma and surgery. British Journal of Anaesthesia 2000; 85(1): 109-117.
19.Fleck, A., Raines, G., Hawker, F., Trotter, J., Wallace, P.I., Ledingham, I.M. and Calman, K.C. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1985; 1(8432): 781-784.
20.Grocott, M.P., Mythen, M.G. and Gan, T.J. Perioperative fluid management and clinical outcomes in adults. Anesthesia and Analgesia 2005; 100(4): 1093-1106.
21.Holte, K., Sharrock, N.E. and Kehlet, H. Pathophysiology and clinical implications of perioperative fluid excess. British Journal of Anaesthesia 2002; 89(4): 622-632.
22.Brandstrup, B., Tonnesen, H., Beier-Holgersen, R., Hjortso, E., Ording, H., Lindorff-Larsen, K., Rasmussen, M.S., Lanng, C., Wallin, L., Iversen, L.H., Gramkow, C.S., Okholm, M., Blemmer, T., Svendsen, P.E., Rottensten, H.H., Thage, B., Riis, J., Jeppesen, I.S., Teilum, D., Christensen, A.M., Graungaard, B. and Pott, F. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Annals of Surgery 2003; 238(5): 641-648.
23.Nisanevich, V., Felsenstein, I., Almogy, G., Weissman, C., Einav, S. and Matot, I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 2005; 103(1): 25-32.
24.Lobo, D.N., Bostock, K.A., Neal, K.R., Perkins, A.C., Rowlands, B.J. and Allison, S.P. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 2002; 359(9320): 1812-1818.
25.Baum, T.D., Wang, H., Rothschild, H.R., Gang, D.L. and Fink, M.P. Mesenteric oxygen metabolism, ileal mucosal hydrogen ion concentration, and tissue edema after crystalloid or colloid resuscitation in porcine endotoxic shock: comparison of Ringer''s lactate and 6% hetastarch. Circulatory Shock 1990; 30(4): 385-397.
26.Moon, P.F., Hollyfield-Gilbert, M.A., Myers, T.L. and Kramer, G.C. Effects of isotonic crystalloid resuscitation on fluid compartments in hemorrhaged rats. Shock 1994; 2(5): 355-361.
27.Rackow, E.C., Astiz, M.E., Schumer, W. and Weil, M.H. Lung and muscle water after crystalloid and colloid infusion in septic rats: effect on oxygen delivery and metabolism. Journal of Laboratory and Clinical Medicine 1989; 113(2): 184-189.
28.Kozek-Langenecker, S.A. Effects of hydroxyethyl starch solutions on hemostasis. Anesthesiology 2005; 103(3): 654-660.
29.Strauss, R.G., Pennell, B.J. and Stump, D.C. A randomized, blinded trial comparing the hemostatic effects of pentastarch versus hetastarch. Transfusion 2002; 42(1): 27-36.
30.Langeron, O., Doelberg, M., Ang, E.T., Bonnet, F., Capdevila, X. and Coriat, P. Voluven, a lower substituted novel hydroxyethyl starch (HES 130/0.4), causes fewer effects on coagulation in major orthopedic surgery than HES 200/0.5. Anesthesia and Analgesia 2001; 92(4): 855-862.
31.de Jonge, E. and Levi, M. Effects of different plasma substitutes on blood coagulation: a comparative review. Critical Care Medicine 2001; 29(6): 1261-1267.
32.Petroianu, G.A., Liu, J., Maleck, W.H., Mattinger, C. and Bergler, W.F. The effect of In vitro hemodilution with gelatin, dextran, hydroxyethyl starch, or Ringer''s solution on Thrombelastograph. Anesthesia and Analgesia 2000; 90(4): 795-800.
33.Knutson, J.E., Deering, J.A., Hall, F.W., Nuttall, G.A., Schroeder, D.R., White, R.D. and Mullany, C.J. Does intraoperative hetastarch administration increase blood loss and transfusion requirements after cardiac surgery? Anesthesia and Analgesia 2000; 90(4): 801-807.
34.Tobias, M.D., Wambold, D., Pilla, M.A. and Greer, F. Differential effects of serial hemodilution with hydroxyethyl starch, albumin, and 0.9% saline on whole blood coagulation. Journal of Clinical Anesthesia 1998; 10(5): 366-371.
35.Mortier, E., Ongenae, M., De Baerdemaeker, L., Herregods, L., Den Blauwen, N., Van Aken, J. and Rolly, G. In vitro evaluation of the effect of profound haemodilution with hydroxyethyl starch 6%, modified fluid gelatin 4% and dextran 40 10% on coagulation profile measured by thromboelastography. Anaesthesia 1997; 52(11): 1061-1064.
36.Claes, Y., Van Hemelrijck, J., Van Gerven, M., Arnout, J., Vermylen, J., Weidler, B. and Van Aken, H. Influence of hydroxyethyl starch on coagulation in patients during the perioperative period. Anesthesia and Analgesia 1992; 75(1): 24-30.
37.Bergman, A., Andreen, M. and Blomback, M. Plasma substitution with 3% dextran-60 in orthopaedic surgery: influence on plasma colloid osmotic pressure, coagulation parameters, immunoglobulins and other plasma constituents. Acta Anaesthesiologica Scandinavica 1990; 34(1): 21-29.
38.Audibert, G., Donner, M., Lefevre, J.C., Stoltz, J.F. and Laxenaire, M.C. Rheologic effects of plasma substitutes used for preoperative hemodilution. Anesthesia and Analgesia 1994; 78(4): 740-745.
39.Ljungstrom, K.G. Safety of dextran in relation to other colloids--ten years experience with hapten inhibition. Infusionstherapie und Transfusionsmedizin 1993; 20(5): 206-210.
40.Wheeler, D.W. and van Heerden, N. Itching after use of starch solutions. British Journal of Anaesthesia 1999; 83(6): 973-974.
41.Speight, E.L., MacSween, R.M. and Stevens, A. Persistent itching due to etherified starch plasma expander. British Medical Journal (Clinical Research Ed.) 1997; 314(7092): 1466-1467.
42.Treib, J., Baron, J.F., Grauer, M.T. and Strauss, R.G. An international view of hydroxyethyl starches. Intensive Care Medicine 1999; 25(3): 258-268.
43.Treib, J., Haass, A. and Pindur, G. Coagulation disorders caused by hydroxyethyl starch. Thrombosis and Haemostasis 1997; 78(3): 974-983.
44.Treib, J., Haass, A., Pindur, G., Grauer, M.T., Wenzel, E. and Schimrigk, K. All medium starches are not the same: influence of the degree of hydroxyethyl substitution of hydroxyethyl starch on plasma volume, hemorrheologic conditions, and coagulation. Transfusion 1996; 36(5): 450-455.
45.Treib, J., Haass, A., Pindur, G., Seyfert, U.T., Treib, W., Grauer, M.T., Jung, F., Wenzel, E. and Schimrigk, K. HES 200/0.5 is not HES 200/0.5. Influence of the C2/C6 hydroxyethylation ratio of hydroxyethyl starch (HES) on hemorheology, coagulation and elimination kinetics. Thrombosis and Haemostasis 1995; 74(6): 1452-1456.
46.Jungheinrich, C., Sauermann, W., Bepperling, F. and Vogt, N.H. Volume efficacy and reduced influence on measures of coagulation using hydroxyethyl starch 130/0.4 (6%) with an optimised in vivo molecular weight in orthopaedic surgery : a randomised, double-blind study. Drugs in R and D 2004; 5(1): 1-9.
47.Treib, J., Haass, A., Pindur, G., Treib, W., Wenzel, E. and Schimrigk, K. Influence of intravascular molecular weight of hydroxyethyl starch on platelets. European Journal of Haematology 1996; 56(3): 168-172.
48.Funk, W. and Baldinger, V. Microcirculatory perfusion during volume therapy. A comparative study using crystalloid or colloid in awake animals. Anesthesiology 1995; 82(4): 975-982.
49.Asfar, P., Kerkeni, N., Labadie, F., Gouello, J.P., Brenet, O. and Alquier, P. Assessment of hemodynamic and gastric mucosal acidosis with modified fluid versus 6% hydroxyethyl starch: a prospective, randomized study. Intensive Care Medicine 2000; 26(9): 1282-1287.
50.Forrest, D.M., Baigorri, F., Chittock, D.R., Spinelli, J.J. and Russell, J.A. Volume expansion using pentastarch does not change gastric-arterial CO2 gradient or gastric intramucosal pH in patients who have sepsis syndrome. Critical Care Medicine 2000; 28(7): 2254-2258.
51.Lang, K., Boldt, J., Suttner, S. and Haisch, G. Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesthesia and Analgesia 2001; 93(2): 405-409.
52.Standl, T., Burmeister, M.A., Schroeder, F., Currlin, E., Schulte am Esch, J. and Freitag, M. Hydroxyethyl starch (HES) 130/0.4 provides larger and faster increases in tissue oxygen tension in comparison with prehemodilution values than HES 70/0.5 or HES 200/0.5 in volunteers undergoing acute normovolemic hemodilution. Anesthesia and Analgesia 2003; 96(4): 936-943.
53.Neff, T.A., Fischler, L., Mark, M., Stocker, R. and Reinhart, W.H. The influence of two different hydroxyethyl starch solutions (6% HES 130/0.4 and 200/0.5) on blood viscosity. Anesthesia and Analgesia 2005; 100(6): 1773-1780.
54.Freyburger, G., Dubreuil, M., Boisseau, M.R. and Janvier, G. Rheological properties of commonly used plasma substitutes during preoperative normovolaemic acute haemodilution. British Journal of Anaesthesia 1996; 76(4): 519-525.
55.Castro, V.J., Astiz, M.E. and Rackow, E.C. Effect of crystalloid and colloid solutions on blood rheology in sepsis. Shock 1997; 8(2): 104-107.
56.Koscielny, J., Latza, R., Pruss, A., Kiesewetter, H., Jung, F., Meier, C. and Schimetta, W. Hypervolumetric hemodilution with HES 100/0.5 10% in patients with peripheral arterial occlusive disease (Fontaine, stage II): an open clinical and pharmacological phase IV study. Clinical Hemorheology and Microcirculation 2000; 22(1): 53-65.
57.Marcinkowska-Gapinska, A., Kowal, P. and Chalupka, Z. The changes of low-shear-rate hemorheological properties depending on the fluid used for transfusion. Clinical Hemorheology and Microcirculation 2002; 27(3-4): 171-176.
58.Haisch, G., Boldt, J., Krebs, C., Kumle, B., Suttner, S. and Schulz, A. The influence of intravascular volume therapy with a new hydroxyethyl starch preparation (6% HES 130/0.4) on coagulation in patients undergoing major abdominal surgery. Anesthesia and Analgesia 2001; 92(3): 565-571.
59.Jamnicki, M., Bombeli, T., Seifert, B., Zollinger, A., Camenzind, V., Pasch, T. and Spahn, D.R. Low- and medium-molecular-weight hydroxyethyl starches: comparison of their effect on blood coagulation. Anesthesiology 2000; 93(5): 1231-1237.
60.Kapiotis, S., Quehenberger, P., Eichler, H.G., Schwarzinger, I., Partan, C., Schneider, B., Lechner, K. and Speiser, W. Effect of hydroxyethyl starch on the activity of blood coagulation and fibrinolysis in healthy volunteers: comparison with albumin. Critical Care Medicine 1994; 22(4): 606-612.
61.Haynes, G.R., Havidich, J.E. and Payne, K.J. Why the Food and Drug Administration changed the warning label for hetastarch. Anesthesiology 2004; 101(2): 560-561.
62.Sanfelippo, M.J., Suberviola, P.D. and Geimer, N.F. Development of a von Willebrand-like syndrome after prolonged use of hydroxyethyl starch. American Journal of Clinical Pathology 1987; 88(5): 653-655.
63.Jones, S.B., Whitten, C.W., Despotis, G.J. and Monk, T.G. The influence of crystalloid and colloid replacement solutions in acute normovolemic hemodilution: a preliminary survey of hemostatic markers. Anesthesia and Analgesia 2003; 96(2): 363-368.
64.Conroy, J.M., Fishman, R.L., Reeves, S.T., Pinosky, M.L. and Lazarchick, J. The effects of desmopressin and 6% hydroxyethyl starch on factor VIII:C. Anesthesia and Analgesia 1996; 83(4): 804-807.
65.Neff, T.A., Doelberg, M., Jungheinrich, C., Sauerland, A., Spahn, D.R. and Stocker, R. Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in patients with severe head injury. Anesthesia and Analgesia 2003; 96(5): 1453-1459.
66.Kasper, S.M., Meinert, P., Kampe, S., Gorg, C., Geisen, C., Mehlhorn, U. and Diefenbach, C. Large-dose hydroxyethyl starch 130/0.4 does not increase blood loss and transfusion requirements in coronary artery bypass surgery compared with hydroxyethyl starch 200/0.5 at recommended doses. Anesthesiology 2003; 99(1): 42-47.
67.Dieterich, H.J., Kraft, D., Sirtl, C., Laubenthal, H., Schimetta, W., Polz, W., Gerlach, E. and Peter, K. Hydroxyethyl starch antibodies in humans: incidence and clinical relevance. Anesthesia and Analgesia 1998; 86(5): 1123-1126.
68.Franz, A., Braunlich, P., Gamsjager, T., Felfernig, M., Gustorff, B. and Kozek-Langenecker, S.A. The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesthesia and Analgesia 2001; 92(6): 1402-1407.
69.Deusch, E., Gamsjager, T., Kress, H.G. and Kozek-Langenecker, S.A. Binding of hydroxyethyl starch molecules to the platelet surface. Anesthesia and Analgesia 2003; 97(3): 680-683.
70.Juttner, B., Kuse, E.R., Elsner, H.A., Heine, J., Jaeger, K., Piepenbrock, S. and Scheinichen, D. Differential platelet receptor expression following hydroxyethyl starch infusion in thrombocytopaenic orthotopic liver transplantation recipients. European Journal of Anaesthesiology 2004; 21(4): 309-313.
71.Gamsjager, T., Gustorff, B. and Kozek-Langenecker, S.A. The effects of hydroxyethyl starches on intracellular calcium in platelets. Anesthesia and Analgesia 2002; 95(4): 866-869.
72.Stogermuller, B., Stark, J., Willschke, H., Felfernig, M., Hoerauf, K. and Kozek-Langenecker, S.A. The effect of hydroxyethyl starch 200 kD on platelet function. Anesthesia and Analgesia 2000; 91(4): 823-827.
73.Konrad, C.J., Markl, T.J., Schuepfer, G.K., Schmeck, J. and Gerber, H.R. In vitro effects of different medium molecular hydroxyethyl starch solutions and lactated Ringer''s solution on coagulation using SONOCLOT. Anesthesia and Analgesia 2000; 90(2): 274-279.
74.Felfernig, M., Franz, A., Braunlich, P., Fohringer, C. and Kozek-Langenecker, S.A. The effects of hydroxyethyl starch solutions on thromboelastography in preoperative male patients. Acta Anaesthesiologica Scandinavica 2003; 47(1): 70-73.
75.Gallandat Huet, R.C., Siemons, A.W., Baus, D., van Rooyen-Butijn, W.T., Haagenaars, J.A., van Oeveren, W. and Bepperling, F. A novel hydroxyethyl starch (Voluven) for effective perioperative plasma volume substitution in cardiac surgery. Canadian Journal of Anaesthesia 2000; 47(12): 1207-1215.
76.Scharbert, G., Deusch, E., Kress, H.G., Greher, M., Gustorff, B. and Kozek-Langenecker, S.A. Inhibition of platelet function by hydroxyethyl starch solutions in chronic pain patients undergoing peridural anesthesia. Anesthesia and Analgesia 2004; 99(3): 823-827.
77.Chen, G., Yan, M., Lu, Q.H. and Gong, M. Effects of two different hydroxyethyl starch solutions (HES200/0.5 vs. HES130/0.4) on the expression of platelet membrane glycoprotein. Acta Anaesthesiologica Scandinavica 2006; 50(9): 1089-1094.
78.Mittermayr, M., Streif, W., Haas, T., Fries, D., Velik-Salchner, C., Klingler, A., Oswald, E., Bach, C., Schnapka-Koepf, M. and Innerhofer, P. Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesthesia and Analgesia 2007; 105(4): 905-917.
79.Finfer, S., Bellomo, R., Boyce, N., French, J., Myburgh, J. and Norton, R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. New England Journal of Medicine 2004; 350(22): 2247-2256.
80.Choi, P.T., Yip, G., Quinonez, L.G. and Cook, D.J. Crystalloids vs. colloids in fluid resuscitation: a systematic review. Critical Care Medicine 1999; 27(1): 200-210.
81.Chappell, D., Jacob, M., Hofmann-Kiefer, K., Conzen, P. and Rehm, M. A rational approach to perioperative fluid management. Anesthesiology 2008; 109(4): 723-740.
82.Shields, C.J. Towards a new standard of perioperative fluid management. Therapeutics and Clinical Risk Management 2008; 4(2): 569-571.
83.Jacob, M., Chappell, D. and Rehm, M. Clinical update: perioperative fluid management. Lancet 2007; 369(9578): 1984-1986.
84.Marik, P.E. and Iglesias, J. Would the colloid detractors please sit down! Critical Care Medicine 2000; 28(7): 2652-2654.
85.Roberts, I., Alderson, P., Bunn, F., Chinnock, P., Ker, K. and Schierhout, G. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database of Systematic Reviews 2004; (4): CD000567.
86.Yen, T.S., Chan, K.C. and Cheng, Y.J. Intraoperative coagulation was more interfered by HES 200/0.5 than normal saline in off-pump coronary artery bypass surgery. Journal of Cardiovascular Surgery 2008; 49(5): 679-684.
87.Reinhart, K. and Bloos, F. The value of venous oximetry. Current Opinion in Critical Care 2005; 11(3): 259-263.
88.Harvey, S., Harrison, D.A., Singer, M., Ashcroft, J., Jones, C.M., Elbourne, D., Brampton, W., Williams, D., Young, D. and Rowan, K. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 2005; 366(9484): 472-477.
89.Sakr, Y., Vincent, J.L., Reinhart, K., Payen, D., Wiedermann, C.J., Zandstra, D.F. and Sprung, C.L. Use of the pulmonary artery catheter is not associated with worse outcome in the ICU. Chest 2005; 128(4): 2722-2731.
90.Sandham, J.D., Hull, R.D., Brant, R.F., Knox, L., Pineo, G.F., Doig, C.J., Laporta, D.P., Viner, S., Passerini, L., Devitt, H., Kirby, A. and Jacka, M. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. New England Journal of Medicine 2003; 348(1): 5-14.
91.Reinhart, K., Kuhn, H.J., Hartog, C. and Bredle, D.L. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Medicine 2004; 30(8): 1572-1578.
92.Schou, H., Perez de Sa, V. and Larsson, A. Central and mixed venous blood oxygen correlate well during acute normovolemic hemodilution in anesthetized pigs. Acta Anaesthesiologica Scandinavica 1998; 42(2): 172-177.
93.Krantz, T., Warberg, J. and Secher, N.H. Venous oxygen saturation during normovolaemic haemodilution in the pig. Acta Anaesthesiologica Scandinavica 2005; 49(8): 1149-1156.
94.Reinhart, K., Rudolph, T., Bredle, D.L., Hannemann, L. and Cain, S.M. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest 1989; 95(6): 1216-1221.
95.Tahvanainen, J., Meretoja, O. and Nikki, P. Can central venous blood replace mixed venous blood samples? Critical Care Medicine 1982; 10(11): 758-761.
96.Dueck, M.H., Klimek, M., Appenrodt, S., Weigand, C. and Boerner, U. Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 2005; 103(2): 249-257.
97.Pearse, R., Dawson, D., Fawcett, J., Rhodes, A., Grounds, R.M. and Bennett, E.D. Changes in central venous saturation after major surgery, and association with outcome. Critical Care 2005; 9(6): R694-699.
98.Bloos, F. and Reinhart, K. Venous oximetry. Intensive Care Medicine 2005; 31(7): 911-913.
99.Hamilton-Davies, C., Mythen, M.G., Salmon, J.B., Jacobson, D., Shukla, A. and Webb, A.R. Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Medicine 1997; 23(3): 276-281.
100.Mythen, M.G. and Webb, A.R. Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost. Intensive Care Medicine 1994; 20(2): 99-104.
101.Corbett, E.J., Barry, B.N., Pollard, S.G., Lodge, J.P. and Bellamy, M.C. Laser Doppler flowmetry is useful in the clinical management of small bowel transplantation. The Liver Transplant Group. Gut 2000; 47(4): 580-583.
102.Edsander-Nord, A., Rojdmark, J. and Wickman, M. Metabolism in pedicled and free TRAM flaps: a comparison using the microdialysis technique. Plastic and Reconstructive Surgery 2002; 109(2): 664-673.
103.Thorniley, M.S., Sinclair, J.S., Barnett, N.J., Shurey, C.B. and Green, C.J. The use of near-infrared spectroscopy for assessing flap viability during reconstructive surgery. British Journal of Plastic Surgery 1998; 51(3): 218-226.
104.Velmahos, G.C., Demetriades, D., Shoemaker, W.C., Chan, L.S., Tatevossian, R., Wo, C.C., Vassiliu, P., Cornwell, E.E., 3rd, Murray, J.A., Roth, B., Belzberg, H., Asensio, J.A. and Berne, T.V. Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Annals of Surgery 2000; 232(3): 409-418.
105.Raskin, D.J., Erk, Y., Spira, M. and Melissinos, E.G. Tissue pH monitoring in microsurgery: a preliminary evaluation of continuous tissue pH monitoring as an indicator of perfusion disturbances in microvascular free flaps. Annals of Plastic Surgery 1983; 11(4): 331-339.
106.Ivatury, R.R., Simon, R.J., Islam, S., Fueg, A., Rohman, M. and Stahl, W.M. A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. Journal of the American College of Surgeons 1996; 183(2): 145-154.
107.Pargger, H., Hampl, K.F., Christen, P., Staender, S. and Scheidegger, D. Gastric intramucosal pH-guided therapy in patients after elective repair of infrarenal abdominal aneurysms: is it beneficial? Intensive Care Medicine 1998; 24(8): 769-776.
108.Karoutsos, S., Nathan, N., Lahrimi, A., Grouille, D., Feiss, P. and Cox, D.J. Thrombelastogram reveals hypercoagulability after administration of gelatin solution. British Journal of Anaesthesia 1999; 82(2): 175-177.
109.Egli, G.A., Zollinger, A., Seifert, B., Popovic, D., Pasch, T. and Spahn, D.R. Effect of progressive haemodilution with hydroxyethyl starch, gelatin and albumin on blood coagulation. British Journal of Anaesthesia 1997; 78(6): 684-689.
110.Ganter, M.T. and Hofer, C.K. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesthesia and Analgesia 2008; 106(5): 1366-1375.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top