跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾全福
論文名稱:高解析不震盪算則於不可壓縮那維爾-史托克方程式
論文名稱(外文):A High-Resolution ,Non-Oscillatory scheme for Incompressible Navier-Stokes Equations
指導教授:謝國台蔡永培
學位類別:碩士
校院名稱:中華大學
系所名稱:機械與航太工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:54
中文關鍵詞:不可壓縮流人工壓縮法
外文關鍵詞:incompressible flowartificial compressibility methodweighted essentially non-oscillatoryLU-SGS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究為建立一數值模擬程式,藉以分析不可壓縮流之流場。
在數值方法的選擇上,吾人不以傳統求解不可壓縮流的SIMPLE法,而採以同為原始變數表示法(Primitive-Variable formulation)的人工壓縮法(Artificial Compressibility method) 配合可壓縮流領域中發展出的加權型基本不震盪(Weighted Essentially Non-Oscillatory) 算則直接求解不可壓縮型式的Navier-Stokes方程式。而程式撰寫技巧上採用具增強數值穩定性的Lower-Upper Symmetric-Gauss-Seidel Method ( LU-SGS method ) 以求更快的收斂。文中選擇了兩個典型的不可壓縮流測試範例-空穴流及背向階梯流來測試所撰寫程式的可靠性,其結果顯示都有不錯的精確度。
A numerical simulation program to analyze incompressible flow has been developed. The artificial compressibility method of primitive variable formulation, which has been developed for compressible flow, was used in this work. Specifically, the governing Navier-Stokes equations were solved with weighted essentially non-oscillatory (WENO) scheme. In addition, the Lower-Upper Symmetric-Gauss-Seidel (LU-SGS) method was adopted to enhance numerical stability and to achieve fast convergence.
Two classical incompressible flow, cavity flow and backward —step flow, where examined to validate the numerical simulation program. Good agreement between the numerical simulation results and the published experimental data in the literature was obtained.
英文摘要 …………………….…………………………… I
中文摘要 …………………………………………………. II
誌 謝 …………………………………………………. III
目 錄 …………………………………………………. IV
圖 目 錄 …………………………………………………. Ⅵ
符號說明 …………………………………………………. Ⅷ
第一章 緒 論 …………….………………………….. 1
1.1 引 言 ……………………………………….. 1
1.2 文獻回顧 ……………………………………… 1
1.3 章節簡介 ……………………………………… 5
第二章 物理問題 ………………………………………. 6
2.1 物理現象簡述 ……………………………….... 6
2.2 物理問題假設 ………………………………… 7
2.3 二維統御方程式 ……………..……….……… 7
第三章 數值方法 ……………………………………...… 10
3.1 人工壓縮法 ……………………………………… 10
3.2 空間離散 ……………………………………… 12
3.3 WENO算則 …………..………………………. 16
3.3.1 WENO2 ………………………………… 17
3.3.2 WENO3 ………………………………… 19
3.4 時間離散 ……………………………………… 21
3.5 LU-SGS隱式法 ………………………………. 23
3.6 網格之建立 ……………………………………. 25
3.7 邊界條件 ………………………………………. 26
第四章 結果分析 ……..…………………………………. 29
4.1 二維空穴流 …………….……………………… 29
4.2 背向階梯流 ………………………………..… 30
第五章 結論與未來展望 ……………………………… 31
參考文獻 ………………………………………………… 32
[1] B. F. ARMALY , F. DURST , J. C. F. PEREIRA AND B. SCHONUNG 1983 , Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech ,vol 127 , pp. 473-496.
[2] Chorin, A. J. 1967, A Numerical Method for Solving Incompressible Viscous Flow Problems, J. Computational Physics, vol 2, pp.12-26.
[3] Eggleton, C. D., Pulliam, T. H. and Ferziger, J. H. 1996,Numerical Simulation of Viscoelastic Flow Using Flux Difference Splitting at Moderate Reynolds Numbers, J. Non-Newtonian Fluid Mech., 64, pp.269-298.
[4] Jameson, A. and Yoon, S. 1987, Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations, AIAA Journal, Vol. 25, No. 7, pp.929-935.
[5] Ju, Y. 1995, Lower-Upper Scheme for Chemically Reacting Flow with Finite Rate Chemistry, AIAA Jouranl, Vol. 33, No. 8, pp.1418-1425.
[6] Jiang, G. S. and Shu, C. H. 1996, Efficient Implementation of Weighted ENO Schemes, J. Computerational Physics, 126, pp.202-228.
[7] Kaushik, S. and Rubin, S. G. 1995, Incompressible Navier-Stokes Solutions with a New Primitive Variable Solver, Computer and Fluids, Vol. 24, No. 1, pp. 27-40.
[8] Kim, J. and Moin, P. 1985, Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations, J. Computational Physics, 59, pp.308-323.
[9] Kwak, D., Chang, L. C., Shanks, P. and Chakravarthy, R. 1986, A Three-Dimensional Incompressible Navier-Stokes Flow Solver Using Primitive Variables, AIAA Journal, Vol. 24, No. 3, pp.390-396.
[10] J. KIM AND P. MOIN, 1984, Application of a Fractional-Step Method to incompressible Navier-Stokes Equations, J. Computational Physics, 59, pp.308-323.
[11] Liu, X. D., Osher, S. and Chan, T. 1994, Weighted Essentially Non-oscillatory Schemes, J. Computational Physics, 115, pp.200-212.
[12] Lee, S. L. and Sheu, S. R. 2000, Filling Process in an Open Tank, The 7th National Computation Fluid Dynamics Conference, pp.A-19-A-23.
[13] Ogawa, T. 1999, Development of a Flow Solver Using the Adaptive Cartesian Mesh Algorithm for Wind Environment Assessment, J. Wind Engineering and Industrial Aerodynamics, 81, pp.377-389.
[14] Pulliam, T. H. and Steger, J. L. 1980, Implicit Finite-Difference Simulations of Three-Dimensional Compressible Flow, AIAA Journal, Vol. 18, No. 2, pp.159-167.
[15] Rosenfeld, M., Kwak, D. and Vinokur, M. 1991, A fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems, J. Computational Physics, 94, pp.102-137.
[16] Siikonen, T. 1995, An Application of Roe’s Flux-Difference Splitting for k-ε Turbulence Model, Int. J. Numerical Methods in Fluids, Vol. 21, pp.1017-1037.
[17] U. GHIA, K. N. GHIA, AND C. T. SHIN. 1982, High-Re Solutions for incompressible Flow Using Navier-Stokes Equations and a Multigrid Method, J.Computational Physics, Vol. 48, pp.387-411.
[18] Yuan, X. and Daiguji, H. 2001, A specially combined lower-upper factored implicit scheme for three-dimensional compressible Navier-Stokes equations, Computers & Fluids, 30, pp.339-361.
[19] Yoon, S. and Jameson, A. 1988, Lower-Upper Symmetric-Gauss- Seidel Method for the Euler and Navier-Stokes Equations, AIAA Journal, Vol. 26, No. 9, pp.1025-1026.
[20] Yang, J. Y., Perng, Y. C. and Yang, S. C. 2000, The Development of Implicit Weighted ENO Schemes and its Applications, The 7th National Computation Fluid Dynamics Conference, pp.A-26-A-32.
[21] Yoon, S. and Kwak, D. 1994, Multigrid Convergence of an Implicit Symmetric Relaxation Scheme, AIAA Journal, Vol. 32, No. 5, pp.950-955.
[22] Yokota, W. and Caughey, D. A. 1988, LU Implicit Multigrid Algorithm for the Three-Dimensional Euler Equations, AIAA Journal, Vol. 26, No. 9, pp.1061-1069.
[23] 楊照彥, 1994年 9月, 三維那維爾-史多克斯方程式之隱式不振盪算則, 行政院國家科學委員會專題研究計畫成果報告。
[24] 楊照彥, 1995年9月, 極音速太空航器稀薄氣體動力特性研究 (I)&(II), 行政院國家科學委員會專題計畫成果報告。
[25] 楊世昌, 1998 年6月, 黏性不可壓縮流之高解析算則的發展及其應用,台灣大學機械研究所博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top