[1] B. F. ARMALY , F. DURST , J. C. F. PEREIRA AND B. SCHONUNG 1983 , Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech ,vol 127 , pp. 473-496.
[2] Chorin, A. J. 1967, A Numerical Method for Solving Incompressible Viscous Flow Problems, J. Computational Physics, vol 2, pp.12-26.
[3] Eggleton, C. D., Pulliam, T. H. and Ferziger, J. H. 1996,Numerical Simulation of Viscoelastic Flow Using Flux Difference Splitting at Moderate Reynolds Numbers, J. Non-Newtonian Fluid Mech., 64, pp.269-298.
[4] Jameson, A. and Yoon, S. 1987, Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations, AIAA Journal, Vol. 25, No. 7, pp.929-935.
[5] Ju, Y. 1995, Lower-Upper Scheme for Chemically Reacting Flow with Finite Rate Chemistry, AIAA Jouranl, Vol. 33, No. 8, pp.1418-1425.
[6] Jiang, G. S. and Shu, C. H. 1996, Efficient Implementation of Weighted ENO Schemes, J. Computerational Physics, 126, pp.202-228.
[7] Kaushik, S. and Rubin, S. G. 1995, Incompressible Navier-Stokes Solutions with a New Primitive Variable Solver, Computer and Fluids, Vol. 24, No. 1, pp. 27-40.
[8] Kim, J. and Moin, P. 1985, Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations, J. Computational Physics, 59, pp.308-323.
[9] Kwak, D., Chang, L. C., Shanks, P. and Chakravarthy, R. 1986, A Three-Dimensional Incompressible Navier-Stokes Flow Solver Using Primitive Variables, AIAA Journal, Vol. 24, No. 3, pp.390-396.
[10] J. KIM AND P. MOIN, 1984, Application of a Fractional-Step Method to incompressible Navier-Stokes Equations, J. Computational Physics, 59, pp.308-323.
[11] Liu, X. D., Osher, S. and Chan, T. 1994, Weighted Essentially Non-oscillatory Schemes, J. Computational Physics, 115, pp.200-212.
[12] Lee, S. L. and Sheu, S. R. 2000, Filling Process in an Open Tank, The 7th National Computation Fluid Dynamics Conference, pp.A-19-A-23.
[13] Ogawa, T. 1999, Development of a Flow Solver Using the Adaptive Cartesian Mesh Algorithm for Wind Environment Assessment, J. Wind Engineering and Industrial Aerodynamics, 81, pp.377-389.
[14] Pulliam, T. H. and Steger, J. L. 1980, Implicit Finite-Difference Simulations of Three-Dimensional Compressible Flow, AIAA Journal, Vol. 18, No. 2, pp.159-167.
[15] Rosenfeld, M., Kwak, D. and Vinokur, M. 1991, A fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems, J. Computational Physics, 94, pp.102-137.
[16] Siikonen, T. 1995, An Application of Roe’s Flux-Difference Splitting for k-ε Turbulence Model, Int. J. Numerical Methods in Fluids, Vol. 21, pp.1017-1037.
[17] U. GHIA, K. N. GHIA, AND C. T. SHIN. 1982, High-Re Solutions for incompressible Flow Using Navier-Stokes Equations and a Multigrid Method, J.Computational Physics, Vol. 48, pp.387-411.
[18] Yuan, X. and Daiguji, H. 2001, A specially combined lower-upper factored implicit scheme for three-dimensional compressible Navier-Stokes equations, Computers & Fluids, 30, pp.339-361.
[19] Yoon, S. and Jameson, A. 1988, Lower-Upper Symmetric-Gauss- Seidel Method for the Euler and Navier-Stokes Equations, AIAA Journal, Vol. 26, No. 9, pp.1025-1026.
[20] Yang, J. Y., Perng, Y. C. and Yang, S. C. 2000, The Development of Implicit Weighted ENO Schemes and its Applications, The 7th National Computation Fluid Dynamics Conference, pp.A-26-A-32.
[21] Yoon, S. and Kwak, D. 1994, Multigrid Convergence of an Implicit Symmetric Relaxation Scheme, AIAA Journal, Vol. 32, No. 5, pp.950-955.
[22] Yokota, W. and Caughey, D. A. 1988, LU Implicit Multigrid Algorithm for the Three-Dimensional Euler Equations, AIAA Journal, Vol. 26, No. 9, pp.1061-1069.
[23] 楊照彥, 1994年 9月, 三維那維爾-史多克斯方程式之隱式不振盪算則, 行政院國家科學委員會專題研究計畫成果報告。
[24] 楊照彥, 1995年9月, 極音速太空航器稀薄氣體動力特性研究 (I)&(II), 行政院國家科學委員會專題計畫成果報告。
[25] 楊世昌, 1998 年6月, 黏性不可壓縮流之高解析算則的發展及其應用,台灣大學機械研究所博士論文。