|
1. Russell, J. A. 2006. Management of sepsis. N. Engl. J. Med. 355:1699-1713. 2. Angus, D. C. M. D. M. P. H. F., W. T. Linde-Zwirble, J. M. A. Lidicker, G. M. D. Clermont, J. M. D. Carcillo, and M. R. M. D. F. Pinsky. 2001. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29:1303-1310. 3. Jerala, R. 2007. Structural biology of the LPS recognition. Int. J. Med. Microbiol. 297:353-363. 4. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801. 5. Krishnan, J., K. Selvarajoo, M. Tsuchiya, G. Lee, and S. Choi. 2007. Toll-like receptor signal transduction. Exp. Mol. Med. 39:421-438. 6. Sivori, S., M. Falco, M. Della Chiesa, S. Carlomagno, M. Vitale, L. Moretta, and A. Moretta. 2004. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 101:10116-10121. 7. Termeer, C., F. Benedix, J. Sleeman, C. Fieber, U. Voith, T. Ahrens, K. Miyake, M. Freudenberg, C. Galanos, and J. C. Simon. 2002. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195:99-111. 8. Imanishi, T., H. Hara, S. Suzuki, N. Suzuki, S. Akira, and T. Saito. 2007. Cutting edge: TLR2 directly triggers Th1 effector functions. J. Immunol. 178:6715-6719. 9. Anand, A. R., M. Cucchiarini, E. F. Terwilliger, and R. K. Ganju. 2008. The tyrosine kinase Pyk2 mediates lipopolysaccharide-induced IL-8 expression in human endothelial cells. J. Immunol. 180:5636-5644. 10. Shang, L., M. Fukata, N. Thirunarayanan, A. P. Martin, P. Arnaboldi, D. Maussang, C. Berin, J. C. Unkeless, L. Mayer, M. T. Abreu, and S. A. Lira. 2008. Toll-Like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 135:529-538. 11. Chmura, K., X. Bai, M. Nakamura, P. Kandasamy, M. McGibney, K. Kuronuma, H. Mitsuzawa, D. R. Voelker, and E. D. Chan. 2008. Induction of IL-8 by Mycoplasma pneumoniae membrane in BEAS-2B cells. Am. J. Physiol. 295:L220-230 12. Dunne, A., and L. A. O'Neill. 2003. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003:re3. 13. Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085-2088. 14. Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443-451. 15. Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740-745. 16. Nagai, Y., S. Akashi, M. Nagafuku, M. Ogata, Y. Iwakura, S. Akira, T. Kitamura, A. Kosugi, M. Kimoto, and K. Miyake. 2002. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3:667-672. 17. Nunez Miguel, R., J. Wong, J. F. Westoll, H. J. Brooks, L. A. O'Neill, N. J. Gay, C. E. Bryant, and T. P. Monie. 2007. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS ONE 2:e788. 18. Fitzgerald, K. A., E. M. Palsson-McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M. T. Harte, D. McMurray, D. E. Smith, J. E. Sims, T. A. Bird, and L. A. O'Neill. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78-83. 19. Tanimura, N., S. Saitoh, F. Matsumoto, S. Akashi-Takamura, and K. Miyake. 2008. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem. Biophys. Res. Commun. 368:94-99. 20. Li, S., A. Strelow, E. J. Fontana, and H. Wesche. 2002. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl. Acad. Sci. U.S.A. 99:5567-5572. 21. Dong, W., Y. Liu, J. Peng, L. Chen, T. Zou, H. Xiao, Z. Liu, W. Li, Y. Bu, and Y. Qi. 2006. The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4. J. Biol. Chem. 281:26029-26040. 22. Sun, L., L. Deng, C. K. Ea, Z. P. Xia, and Z. J. Chen. 2004. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14:289-301. 23. Kagan, J. C., T. Su, T. Horng, A. Chow, S. Akira, and R. Medzhitov. 2008. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9:361-368. 24. Neumann, M., and M. Naumann. 2007. Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J. 21:2642-2654. 25. Hacker, H., and M. Karin. 2006. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006:re13. 26. Anrather, J., G. Racchumi, and C. Iadecola. 2005. cis-acting, element-specific transcriptional activity of differentially phosphorylated nuclear factor-kappaB. J. Biol. Chem. 280:244-252. 27. Malek, S., Y. Chen, T. Huxford, and G. Ghosh. 2001. IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells. J. Biol. Chem. 276:45225-45235. 28. Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and M. Karin. 1997. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91:243-252. 29. Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and A. Rao. 1997. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860-866. 30. Windheim, M., M. Stafford, M. Peggie, and P. Cohen. 2008. Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol. Cell. Biol. 28:1783-1791. 31. Alkalay, I., A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and Y. Ben-Neriah. 1995. Stimulation-dependent IkappaBalpha phosphorylation marks the NF-kappaB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U.S.A. 92:10599-10603. 32. DiDonato, J. A., F. Mercurio, and M. Karin. 1995. Phosphorylation of IkappaBalpha precedes but is not sufficient for its dissociation from NF-kappaB. Mol. Cell. Biol. 15:1302-1311. 33. Kim, Y. W., R. J. Zhao, S. J. Park, J. R. Lee, I. J. Cho, C. H. Yang, S. G. Kim, and S. C. Kim. 2008. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br. J. Pharmacol. 154:165-173. 34. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13:85-94. 35. Swantek, J. L., L. Christerson, and M. H. Cobb. 1999. Lipopolysaccharide-induced tumor necrosis factor-alpha promoter activity is inhibitor of nuclear factor-kappaB kinase-dependent. J. Biol. chem. 274:11667-11671. 36. Davis, R. J. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103:239-252. 37. Ono, K., and J. Han. 2000. The p38 signal transduction pathway: activation and function. Cell. Signal.12:1-13. 38. Dong, C., R. J. Davis, and R. A. Flavell. 2002. MAP kinases in the immune response. Annu. Rev. Immunol. 20:55-72. 39. Kim, S. H., J. Kim, and R. P. Sharma. 2004. Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacol. Res. 49:433-439. 40. Zhu, W., J. S. Downey, J. Gu, F. Di Padova, H. Gram, and J. Han. 2000. Regulation of TNF expression by multiple mitogen-activated protein kinase pathways. J. Immunol. 164:6349-6358. 41. Guha, M., M. A. O'Connell, R. Pawlinski, A. Hollis, P. McGovern, S. F. Yan, D. Stern, and N. Mackman. 2001. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98:1429-1439. 42. Kang, Y. J., J. Chen, M. Otsuka, J. Mols, S. Ren, Y. Wang, and J. Han. 2008. Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. J. Immunol. 180:5075-5082. 43. Beinke, S., M. J. Robinson, M. Hugunin, and S. C. Ley. 2004. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol. Cell. Biol. 24:9658-9667. 44. Kim, H. J., H. S. Lee, Y. H. Chong, and J. L. Kang. 2006. p38 Mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 225:36-47. 45. Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420:885-891. 46. Murakami, T., C. Mataki, C. Nagao, M. Umetani, Y. Wada, M. Ishii, S. Tsutsumi, T. Kohro, A. Saiura, H. Aburatani, T. Hamakubo, and T. Kodama. 2000. The gene expression profile of human umbilical vein endothelial cells stimulated by tumor necrosis factor alpha using DNA microarray analysis. J. Atheroscler. Thromb. 7:39-44. 47. Murakami, A., K. Kawabata, T. Koshiba, G. Gao, Y. Nakamura, K. Koshimizu, and H. Ohigashi. 2000. Nitric oxide synthase is induced in tumor promoter-sensitive, but not tumor promoter-resistant, JB6 mouse epidermal cells cocultured with interferon-gamma-stimulated RAW 264.7 cells: the role of tumor necrosis factor-alpha. Cancer Res. 60:6326-6331. 48. Montecucco, F., S. Steffens, F. Burger, A. Da Costa, G. Bianchi, M. Bertolotto, F. Mach, F. Dallegri, and L. Ottonello. 2008. Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1alpha) on human neutrophils through defined signalling pathways. Cell. Signal. 20:557-568. 49. Chen, C. C., Y. T. Sun, J. J. Chen, and Y. J. Chang. 2001. Tumor necrosis factor-alpha-induced cyclooxygenase-2 expression via sequential activation of ceramide-dependent mitogen-activated protein kinases, and IkappaB kinase 1/2 in human alveolar epithelial cells. Mol. Pharmacol. 59:493-500. 50. Kramer, F., J. Torzewski, J. Kamenz, K. Veit, V. Hombach, J. Dedio, and Y. Ivashchenko. 2008. Interleukin-1beta stimulates acute phase response and C-reactive protein synthesis by inducing an NF-kappaB- and C/EBPbeta-dependent autocrine interleukin-6 loop. Mol. Immunol. 45:2678-2689. 51. Hou, T., S. Ray, and A. R. Brasier. 2007. The functional role of an interleukin 6-inducible CDK9. STAT3 complex in human gamma-fibrinogen gene expression. J. Biol. Chem. 282:37091-37102. 52. Bas, S., B. R. Gauthier, U. Spenato, S. Stingelin, and C. Gabay. 2004. CD14 is an acute-phase protein. J. Immunol. 172:4470-4479. 53. Hagihara, K., T. Nishikawa, T. Isobe, J. Song, Y. Sugamata, and K. Yoshizaki. 2004. IL-6 plays a critical role in the synergistic induction of human serum amyloid A (SAA) gene when stimulated with proinflammatory cytokines as analyzed with an SAA isoform real-time quantitative RT-PCR assay system. Biochem. Biophys. Res. Commun. 314:363-369. 54. Ootsuka, Y., W. W. Blessing, A. A. Steiner, and A. A. Romanovsky. 2008. Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R1294-1303. 55. Blatteis, C. M. 2006. Endotoxic fever: New concepts of its regulation suggest new approaches to its management. Pharmacol. Ther. 111:194-223. 56. Penido, C., A. Vieira-de-Abreu, M. T. Bozza, H. C. Castro-Faria-Neto, and P. T. Bozza. 2003. Role of monocyte chemotactic protein-1/CC chemokine ligand 2 on gammadelta T lymphocyte trafficking during inflammation induced by lipopolysaccharide or Mycobacterium bovis bacille Calmette-Guerin. J. Immunol. 171:6788-6794. 57. Li, X., D. Klintman, Q. Liu, T. Sato, B. Jeppsson, and H. Thorlacius. 2004. Critical role of CXC chemokines in endotoxemic liver injury in mice. J. Leukoc. Biol. 75:443-452. 58. Bultinck, J., P. Sips, L. Vakaet, P. Brouckaert, and A. Cauwels. 2006. Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells: in vivo iNOS expression pattern in (septic) shock. FASEB J. 20:2363-2365. 59. Sun, M. W., M. F. Zhong, J. Gu, F. L. Qian, J. Z. Gu, and H. Chen. 2008. Effects of different levels of exercise volume on endothelium-dependent vasodilation: roles of nitric oxide synthase and heme oxygenase. Hypertens. Res. 31:805-816. 60. Cerwinka, W. H., D. Cooper, C. F. Krieglstein, M. Feelisch, and D. N. Granger. 2002. Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am. J. Physiol. 282:H1111-1117. 61. Hickey, M. J., K. A. Sharkey, E. G. Sihota, P. H. Reinhardt, J. D. Macmicking, C. Nathan, and P. Kubes. 1997. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J. 11:955-964. 62. Strunk, V., K. Hahnenkamp, M. Schneuing, L. G. Fischer, and G. F. Rich. 2001. Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation. Anesth. Analg. 92:681-687. 63. Szallasi, A., D. N. Cortright, C. A. Blum, and S. R. Eid. 2007. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov. 6:357-372. 64. Caterina, M. J., M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius. 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816-824. 65. Nilius, B., G. Owsianik, T. Voets, and J. A. Peters. 2007. Transient receptor potential cation channels in disease. Physiol. Rev. 87:165-217. 66. Huang, J., X. Zhang, and P. A. McNaughton. 2006. Modulation of temperature-sensitive TRP channels. Semin. Cell Dev. Biol. 17:638-645. 67. Caterina, M. J., T. A. Rosen, M. Tominaga, A. J. Brake, and D. Julius. 1999. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436-441. 68. Smith, G. D., M. J. Gunthorpe, R. E. Kelsell, P. D. Hayes, P. Reilly, P. Facer, J. E. Wright, J. C. Jerman, J. P. Walhin, L. Ooi, J. Egerton, K. J. Charles, D. Smart, A. D. Randall, P. Anand, and J. B. Davis. 2002. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186-190. 69. Guler, A. D., H. Lee, T. Iida, I. Shimizu, M. Tominaga, and M. Caterina. 2002. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22:6408-6414. 70. Peier, A. M., A. Moqrich, A. C. Hergarden, A. J. Reeve, D. A. Andersson, G. M. Story, T. J. Earley, I. Dragoni, P. McIntyre, S. Bevan, and A. Patapoutian. 2002. A TRP channel that senses cold stimuli and menthol. Cell 108:705-715. 71. Story, G. M., A. M. Peier, A. J. Reeve, S. R. Eid, J. Mosbacher, T. R. Hricik, T. J. Earley, A. C. Hergarden, D. A. Andersson, S. W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian. 2003. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819-829. 72. Numazaki, M., T. Tominaga, H. Toyooka, and M. Tominaga. 2002. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J. Biol. Chem. 277:13375-13378. 73. Mohapatra, D. P., and C. Nau. 2005. Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J. Biol. Chem. 280:13424-13432. 74. Vetter, I., W. Cheng, M. Peiris, B. D. Wyse, S. J. Roberts-Thomson, J. Zheng, G. R. Monteith, and P. J. Cabot. 2008. Rapid, opioid-sensitive mechanisms involved in transient receptor potential vanilloid 1 sensitization. J. Biol. Chem. 283:19540-19550. 75. Zhang, X., J. Huang, and P. A. McNaughton. 2005. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 24:4211-4223. 76. Jung, J., J. S. Shin, S. Y. Lee, S. W. Hwang, J. Koo, H. Cho, and U. Oh. 2004. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol. Chem. 279:7048-7054. 77. Jeske, N. A., A. M. Patwardhan, N. Gamper, T. J. Price, A. N. Akopian, and K. M. Hargreaves. 2006. Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons. J. Biol. Chem. 281:32879-32890. 78. Liu, B., C. Zhang, and F. Qin. 2005. Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4, 5-bisphosphate. J. Neurosci. 25:4835-4843. 79. Moriyama, T., T. Higashi, K. Togashi, T. Iida, E. Segi, Y. Sugimoto, T. Tominaga, S. Narumiya, and M. Tominaga. 2005. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 1:3. 80. Zhang, N., S. Inan, A. Cowan, R. Sun, J. M. Wang, T. J. Rogers, M. Caterina, and J. J. Oppenheim. 2005. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc. Natl. Acad. Sci. U.S.A. 102:4536-4541. 81. Negri, L., R. Lattanzi, E. Giannini, M. Colucci, F. Margheriti, P. Melchiorri, V. Vellani, H. Tian, M. De Felice, and F. Porreca. 2006. Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J. Neurosci. 26:6716-6727. 82. Scotland, R. S., S. Chauhan, C. Davis, C. De Felipe, S. Hunt, J. Kabir, P. Kotsonis, U. Oh, and A. Ahluwalia. 2004. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction. Circ. Res. 95:1027-1034. 83. Wu, M., N. Komori, C. Qin, J. P. Farber, B. Linderoth, and R. D. Foreman. 2007. Roles of peripheral terminals of transient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilation. Brain Res. 1156:80-92. 84. Lin, Q., D. Li, X. Xu, X. Zou, and L. Fang. 2007. Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin. Mol. Pain 3:30. 85. Novakova-Tousova, K., L. Vyklicky, K. Susankova, J. Benedikt, A. Samad, J. Teisinger, and V. Vlachova. 2007. Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience 149:144-154. 86. Caterina, M. J., A. Leffler, A. B. Malmberg, W. J. Martin, J. Trafton, K. R. Petersen-Zeitz, M. Koltzenburg, A. I. Basbaum, and D. Julius. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306-313. 87. Gunthorpe, M. J., S. L. Hannan, D. Smart, J. C. Jerman, S. Arpino, G. D. Smith, S. Brough, J. Wright, J. Egerton, S. C. Lappin, V. A. Holland, K. Winborn, M. Thompson, H. K. Rami, A. Randall, and J. B. Davis. 2007. Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. J. Pharmacol. Exp. Ther. 321:1183-1192. 88. El Kouhen, R., C. S. Surowy, B. R. Bianchi, T. R. Neelands, H. A. McDonald, W. Niforatos, A. Gomtsyan, C. H. Lee, P. Honore, J. P. Sullivan, M. F. Jarvis, and C. R. Faltynek. 2005. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl- benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J. Pharmacol. Exp. Ther. 314:400-409. 89. Gavva, N. R., R. Tamir, Y. Qu, L. Klionsky, T. J. Zhang, D. Immke, J. Wang, D. Zhu, T. W. Vanderah, F. Porreca, E. M. Doherty, M. H. Norman, K. D. Wild, A. W. Bannon, J. C. Louis, and J. J. Treanor. 2005. AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J. Pharmacol. Exp. Ther. 313:474-484. 90. Basu, S., and P. Srivastava. 2005. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc. Natl. Acad. Sci. U.S.A.102:5120-5125. 91. Kim, S. R., S. U. Kim, U. Oh, and B. K. Jin. 2006. Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. J. Immunol. 177:4322-4329. 92. Agopyan, N., T. Bhatti, S. Yu, and S. A. Simon. 2003. Vanilloid receptor activation by 2- and 10-microm particles induces responses leading to apoptosis in human airway epithelial cells. Toxicol. Appl. Pharmacol. 192:21-35. 93. Waning, J., J. Vriens, G. Owsianik, L. Stuwe, S. Mally, A. Fabian, C. Frippiat, B. Nilius, and A. Schwab. 2007. A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 42:17-25. 94. Zhang, L. L., D. Yan Liu, L. Q. Ma, Z. D. Luo, T. B. Cao, J. Zhong, Z. C. Yan, L. J. Wang, Z. G. Zhao, S. J. Zhu, M. Schrader, F. Thilo, Z. M. Zhu, and M. Tepel. 2007. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Cir. Res. 100:1063-1070. 95. Razavi, R., Y. Chan, F. N. Afifiyan, X. J. Liu, X. Wan, J. Yantha, H. Tsui, L. Tang, S. Tsai, P. Santamaria, J. P. Driver, D. Serreze, M. W. Salter, and H. M. Dosch. 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127:1123-1135. 96. Trevisani, M., D. Gazzieri, F. Benvenuti, B. Campi, Q. T. Dinh, D. A. Groneberg, M. Rigoni, X. Emonds-Alt, C. Creminon, A. Fischer, P. Geppetti, and S. Harrison. 2004. Ethanol causes inflammation in the airways by a neurogenic and TRPV1-dependent mechanism. J. Pharmacol. Exp. Ther. 309:1167-1173. 97. Xu, G.-Y., J. H. Winston, M. Shenoy, H. Yin, S. Pendyala, and P. J. Pasricha. 2007. Transient receptor potential vanilloid 1 mediates hyperalgesia and is up-regulated in rats with chronic pancreatitis. Gastroenterology 133:1282-1292. 98. Yiangou, Y., P. Facer, N. H. Dyer, C. L. Chan, C. Knowles, N. S. Williams, and P. Anand. 2001. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357:1338-1339. 99. Hensellek, S., P. Brell, H. G. Schaible, R. Brauer, and G. Segond von Banchet. 2007. The cytokine TNFalpha increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol. Cell. Neurosci. 36:381-391. 100. Southall, M. D., T. Li, L. S. Gharibova, Y. Pei, G. D. Nicol, and J. B. Travers. 2003. Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J. Pharmacol. Exp. Ther. 304:217-222. 101. Li, W. H., Y. M. Lee, J. Y. Kim, S. Kang, S. Kim, K. H. Kim, C. H. Park, and J. H. Chung. 2007. Transient receptor potential vanilloid-1 mediates heat-shock-induced matrix metalloproteinase-1 expression in human epidermal keratinocytes. J. Invest. Dermatol. 127:2328-2335. 102. Zhang, F., H. Yang, Z. Wang, S. Mergler, H. Liu, T. Kawakita, S. D. Tachado, Z. Pan, J. E. Capo-Aponte, U. Pleyer, H. Koziel, W. W. Kao, and P. S. Reinach. 2007. Transient receptor potential vanilloid 1 activation induces inflammatory cytokine release in corneal epithelium through MAPK signaling. J. Cell. Physiol. 213:730-739. 103. Iida, T., I. Shimizu, M. L. Nealen, A. Campbell, and M. Caterina. 2005. Attenuated fever response in mice lacking TRPV1. Neurosci. Lett. 378:28-33. 104. Clark, N., J. Keeble, E. S. Fernandes, A. Starr, L. Liang, D. Sugden, P. de Winter, and S. D. Brain. 2007. The transient receptor potential vanilloid 1 (TRPV1) receptor protects against the onset of sepsis after endotoxin. FASEB J. 21:3747-3755. 105. Helyes, Z., K. Elekes, J. Nemeth, G. Pozsgai, K. Sandor, L. Kereskai, R. Borzsei, E. Pinter, A. Szabo, and J. Szolcsanyi. 2007. Role of transient receptor potential vanilloid 1 receptors in endotoxin-induced airway inflammation in the mouse. Am. J. Physiol. 292:L1173-1181. 106. Orliac, M. L., R. N. Peroni, T. Abramoff, I. Neuman, E. J. Podesta, and E. Adler-Graschinsky. 2007. Increases in vanilloid TRPV1 receptor protein and CGRP content during endotoxemia in rats. Eur. J. Pharmacol. 566:145-152. 107. Mbalaviele, G., Y. Abu-Amer, A. Meng, R. Jaiswal, S. Beck, M. F. Pittenger, M. A. Thiede, and D. R. Marshak. 2000. Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J. Biol. Chem. 275:14388-14393. 108. Chen, C. W., S. T. Lee, W. T. Wu, W. M. Fu, F. M. Ho, and W. W. Lin. 2003. Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages. Br. J. Pharmacol. 140:1077-1087. 109. Kim, C. S., T. Kawada, B. S. Kim, I. S. Han, S. Y. Choe, T. Kurata, and R. Yu. 2003. Capsaicin exhibits anti-inflammatory property by inhibiting IkappaB-alpha degradation in LPS-stimulated peritoneal macrophages. Cell. Signal. 15:299-306. 110. Li, C. H., J. H. Wang, and H. P. Redmond. 2006. Bacterial lipoprotein-induced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation. J. Leukoc. Biol. 79:867-875. 111. Medvedev, A. E., A. Lentschat, L. M. Wahl, D. T. Golenbock, and S. N. Vogel. 2002. Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. J. Immunol. 169:5209-5216. 112. Chen, B. C., W. T. Wu, F. M. Ho, and W. W. Lin. 2002. Inhibition of interleukin-1beta -induced NF-kappaB activation by calcium/calmodulin-dependent protein kinase kinase occurs through Akt activation associated with interleukin-1 receptor-associated kinase phosphorylation and uncoupling of MyD88. J. Biol. Chem. 277:24169-24179. 113. Wadachi, R., and K. M. Hargreaves. 2006. Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J. Dent. Res. 85:49-53. 114. Goswami, C., M. Dreger, R. Jahnel, O. Bogen, C. Gillen, and F. Hucho. 2004. Identification and characterization of a Ca2+-sensitive interaction of the vanilloid receptor TRPV1 with tubulin. J. Neurochem. 91:1092-1103. 115. Numazaki, M., T. Tominaga, K. Takeuchi, N. Murayama, H. Toyooka, and M. Tominaga. 2003. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc. Natl. Acad. Sci. U.S.A.100:8002-8006. 116. Jin, X., N. Morsy, J. Winston, P. J. Pasricha, K. Garrett, and H. I. Akbarali. 2004. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am J. Physiol. Cell. Physiol. 287:C558-563. 117. Chuang, H. H., E. D. Prescott, H. Kong, S. Shields, S. E. Jordt, A. I. Basbaum, M. V. Chao, and D. Julius. 2001. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957-962. 118. Chen, B. C., and W. W. Lin. 2001. PKC- and ERK-dependent activation of I kappaB kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation. Br. J. Pharmacol. 134:1055-1065. 119. Leu, T. H., S. Charoenfuprasert, C. K. Yen, C. W. Fan, and M. C. Maa. 2006. Lipopolysaccharide-induced c-Src expression plays a role in nitric oxide and TNFalpha secretion in macrophages. Mol. Immunol. 43:308-316. 120. Lee, H. S., C. Moon, H. W. Lee, E. M. Park, M. S. Cho, and J. L. Kang. 2007. Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. J. Immunol. 179:7001-7011. 121. Ma, W., S. Mishra, K. Gee, J. P. Mishra, D. Nandan, N. E. Reiner, J. B. Angel, and A. Kumar. 2007. Cyclosporin A and FK506 inhibit IL-12p40 production through the calmodulin/calmodulin-dependent protein kinase-activated phosphoinositide 3-kinase in lipopolysaccharide-stimulated human monocytic cells. J. Biol.Chem. 282:13351-13362. 122. Medvedev, A. E., W. Piao, J. Shoenfelt, S. H. Rhee, H. Chen, S. Basu, L. M. Wahl, M. J. Fenton, and S. N. Vogel. 2007. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J. Biol.Chem. 282:16042-16053. 123. Bryant, P., M. Shumate, G. Yumet, C. H. Lang, T. C. Vary, and R. N. Cooney. 2003. Capsaicin-sensitive nerves regulate the metabolic response to abdominal sepsis. J. Surg. Res. 112:152-161. 124. Demirbilek, S., M. O. Ersoy, S. Demirbilek, A. Karaman, N. Gurbuz, N. Bayraktar, and M. Bayraktar. 2004. Small-dose capsaicin reduces systemic inflammatory responses in septic rats. Anesth. Analg. 99:1501-1507
|