跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾栩文
研究生(外文):Hsu-Wen Tseng
論文名稱:辣椒素受器在內毒素所引發小鼠巨噬細胞之發炎反應中扮演的角色
論文名稱(外文):Deficiency of Transient Receptor Potential Vanilloid 1 Receptor Attenuates Lipopolysaccharide-Mediated Inflammatory Responses in Murine Macrophages
指導教授:李宗玄李宗玄
指導教授(外文):Tzong-Shyuan LeeTzong-Shyuan Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:79
中文關鍵詞:辣椒素受器巨噬細胞內毒素發炎
外文關鍵詞:Transient Receptor Potential Vanilloid 1LipopolysaccharideMacrophagesInflammatory Responses
相關次數:
  • 被引用被引用:1
  • 點閱點閱:653
  • 評分評分:
  • 下載下載:108
  • 收藏至我的研究室書目清單書目收藏:1
辣椒素受器 (transient receptor potential vanilloid 1, TRPV1) 是一個鈣離子通道,其活性受到許多傷害性刺激所調節,例如辣椒素 (capsaicin)、溫度 (>43℃),氫離子、花生四烯酸 (arachidonic acid) 之代謝產物以及多種炎症介質(inflammatory mediators)。辣椒素受器廣泛地分佈於全身,並且負責多種不同的細胞生理功能。近來有研究指出,辣椒素受器似乎會促進或減緩脂多醣 (lipopolysaccharide, LPS) 所以起的發炎現象,然而我們對於辣椒素受器在發炎反應中的明確角色仍然不甚清楚。由於巨噬細胞 (macrophage) 在先天免疫 (innate immunity) 中佔有重要的地位,而脂多醣主要透過第四型類鐸受體 (toll-like receptor 4, TLR4) 的訊息傳遞引發免疫反應,其下游的核因子 (nuclear factor-kappaB, NF-kappaB)負責許多發炎相關基因的表達。因此,本實驗目的即為研究巨噬細胞上的辣椒素受器是否能夠調節脂多醣引起之免疫反應,並且探討辣椒素受器否參與在第四型類鐸受體訊息傳遞路徑。我們採用從正常及辣椒素受器基因剔除小鼠 (gene knockout mice) 的骨髓取得並分化成的巨噬細胞,作為本研究的實驗模式。脂多醣會促使巨噬細胞增加腫瘤壞死因子-alpha (tumor necrosis factor-alpha, TNF-alpha), 第一介白質(interleukin-1 beta,IL-1 beta), 誘發性一氧化氮合成酶 (inducible nitric oxide synthase, iNOS) 的表現及其反應產物一氧化氮 (nitric oxide, NO) 的產量,然而這些反應在辣椒素受器基因剔除小鼠的巨噬細胞都下降。辣椒素受器基因剔除小鼠的巨噬細胞在受到脂多醣刺激造成的核因子�羠抑制蛋白 (inhibitor of NF-kappaB, IkappaB) 磷酸化、核因子位移 (translocation) 量以及絲裂原蛋白激酶(mitogen-activated protein kinase, MAPK) 的活化都較正常巨噬細胞減少。此外,從免疫沈澱法 (immunoprecipitation) 的結果發現,脂多醣刺激會使第四型類鐸受體訊息傳遞中的重要分子所形成的免疫複合物增加,其中包括第四型類鐸受體、髓樣分化因子88 (myeloid differentiation protein 88 , MyD88)、介白素1受體相關激酶1 (IL-1 receptor-associated kinase, IRAK) 及核因子kappa B抑制激酶(IkappaB kinase, IKK),然而此結合增加的程度在剔除辣椒素受器後會減少。我們更進一步發現在未受刺激時,辣椒素受器就與第四型類鐸受體及CD14形成複合物結合,且在受到脂多醣刺激後的5分鐘內增加。由本研究得知,辣椒素受器可能參與第四型類鐸受體及CD14所形成的複合物,並且經由第四型類鐸受體訊息傳遞路徑調節脂多醣所引起的發炎反應。
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a calcium channel activated by numerous noxious stimuli including capsaicin, heat (>43℃), protons, arachidonic acid metabolites and inflammatory mediators. TRPV1 is widely distributed over body and mediates various cell functions. Recent studies suggested that TRPV1 might positively or negatively regulate lipopolysaccharide (LPS)–induced inflammation; however, the exactly role of TRPV1 in inflammation is not fully understood. It is well established that macrophages play dominant roles in innate immune responses, and toll-like receptor (TLR) 4–mediated signaling transduction contributes largely to the inflammatory responses evoked by LPS. The mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB) pathways are responsible for the expression of many inflammation-associated genes. Therefore, the aims of this study were to investigate the possibility that TRPV1 could regulate LPS-mediated inflammatory responses in macrophages, and the involvement of TRPV1 in TLR4 signaling pathway. To explore the hypothesis, bone marrow-derived macrophages harvested from wild type (WT) and TRPV1 knock out (TRPV1-/-) mice were used as cell models. The LPS-induced elevation of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), inducible nitric oxide synthase (iNOS) and subsequent product nitric oxide (NO) were attenuated in TRPV1-/- macrophages. Compared with WT macrophages, the phosphorylation of inhibitor of NF-kappaB (IkappaB), translocation of NF-kappaB and activation of MAP kinase were reduced in LPS-treated TRPV1-/- macrophages. Based on the results of immunoprecipitation, deficiency of TRPV1 in macrophages impaired the LPS-triggered immune-complex formation of myeloid differentiation protein 88 (MyD88), TLR4, IL-1 receptor-associated kinase (IRAK) and IkappaB kinases (IKK) that are important in TLR4 signaling pathway. Furthermore, the association between TRPV1, TLR4 and CD14 was observed in WT macrophages at basal condition and the interaction was increased within 5 minutes after LPS administration. In conclusion, TRPV1 might participate in the TLR4: CD14 complex formation and maintain the LPS-mediated inflammatory responses through TLR4 signaling pathway.
致謝....................................................IV
ABBREVIATIONS............................................V
ABSTRACT.................................................VI
摘要...................................................VIII
INTRODUCTION.............................................1
I. Lopolysaccharide (LPS)-induced inflammation ..........1
Sepsis...................................................1
Lipopolysaccharide.......................................2
Toll-like receptor.......................................2
Toll-like receptor 4 signaling pathway...................3
Nuclear factor-kappaB (NF-kappaB)........................4
Mitogen-activated protein kinase (MAPK)..................5
LPS-induced inflammatory cascade.........................6
II. Transient receptor potential vanilloid 1 (TRPV1).....7
The structure and ligand of TRP family...................7
Regulation of TRPV1 activity.............................9
Function of TRPV1........................................9
TRPV1 and inflammation..................................11
III. Objective..........................................12
MATERIALS AND METHODS...................................13
Drugs and antibodies....................................13
Mice....................................................14
Isolation of bone marrow-derived macrophages............14
Cell culture condition for J774 and 3T3L1...............15
Genome typing of WT and TRPV1-/- mice...................15
Isolation of RNA........................................16
Reverse transcriptase-PCR...............................17
Determination of cytokine concentrati...................18
Determination of nitrite production.....................19
Preparation of whole cell lysates.......................20
Preparation of nuclear extracts.........................20
Western blot............................................21
Immunoprecipitation.....................................21
Statistic...............................................22
RESULTS.................................................23
Genome typing and TRPV1 expression in macrophages.......23
LPS-induced TNF-alpha and IL-1beta production are attenuated in TRPV1-/- macrophages......................23
LPS-induced iNOS protein induction and NO production are decreased in TRPV1-/- macrophages.......................24
TRPV1 is involved in the regulation of LPS-induced IkappaBalpha phosphorylation and NF-kappaB activation in macrophages.............................................24
TRPV1 is involved in the regulation of LPS-induced MAPK activation in macrophages...............................25
TRPV1 is involved in the regulation of association between MyD88, TLR4, IRAK1 and IKKalpha/beta in macrophages ....26
Participation of TRPV1 in TLR4 complex was increased after LPS challenge...........................................27
DISCUSSION..............................................28
REFERENCES..............................................35
FIGURES.................................................60
1. Russell, J. A. 2006. Management of sepsis. N. Engl. J. Med. 355:1699-1713.
2. Angus, D. C. M. D. M. P. H. F., W. T. Linde-Zwirble, J. M. A. Lidicker, G. M. D. Clermont, J. M. D. Carcillo, and M. R. M. D. F. Pinsky. 2001. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29:1303-1310.
3. Jerala, R. 2007. Structural biology of the LPS recognition. Int. J. Med. Microbiol. 297:353-363.
4. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801.
5. Krishnan, J., K. Selvarajoo, M. Tsuchiya, G. Lee, and S. Choi. 2007. Toll-like receptor signal transduction. Exp. Mol. Med. 39:421-438.
6. Sivori, S., M. Falco, M. Della Chiesa, S. Carlomagno, M. Vitale, L. Moretta, and A. Moretta. 2004. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 101:10116-10121.
7. Termeer, C., F. Benedix, J. Sleeman, C. Fieber, U. Voith, T. Ahrens, K. Miyake, M. Freudenberg, C. Galanos, and J. C. Simon. 2002. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195:99-111.
8. Imanishi, T., H. Hara, S. Suzuki, N. Suzuki, S. Akira, and T. Saito. 2007. Cutting edge: TLR2 directly triggers Th1 effector functions. J. Immunol. 178:6715-6719.
9. Anand, A. R., M. Cucchiarini, E. F. Terwilliger, and R. K. Ganju. 2008. The tyrosine kinase Pyk2 mediates lipopolysaccharide-induced IL-8 expression in human endothelial cells. J. Immunol. 180:5636-5644.
10. Shang, L., M. Fukata, N. Thirunarayanan, A. P. Martin, P. Arnaboldi, D. Maussang, C. Berin, J. C. Unkeless, L. Mayer, M. T. Abreu, and S. A. Lira. 2008. Toll-Like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology 135:529-538.
11. Chmura, K., X. Bai, M. Nakamura, P. Kandasamy, M. McGibney, K. Kuronuma, H. Mitsuzawa, D. R. Voelker, and E. D. Chan. 2008. Induction of IL-8 by Mycoplasma pneumoniae membrane in BEAS-2B cells. Am. J. Physiol. 295:L220-230
12. Dunne, A., and L. A. O'Neill. 2003. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003:re3.
13. Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085-2088.
14. Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443-451.
15. Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740-745.
16. Nagai, Y., S. Akashi, M. Nagafuku, M. Ogata, Y. Iwakura, S. Akira, T. Kitamura, A. Kosugi, M. Kimoto, and K. Miyake. 2002. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3:667-672.
17. Nunez Miguel, R., J. Wong, J. F. Westoll, H. J. Brooks, L. A. O'Neill, N. J. Gay, C. E. Bryant, and T. P. Monie. 2007. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS ONE 2:e788.
18. Fitzgerald, K. A., E. M. Palsson-McDermott, A. G. Bowie, C. A. Jefferies, A. S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M. T. Harte, D. McMurray, D. E. Smith, J. E. Sims, T. A. Bird, and L. A. O'Neill. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:78-83.
19. Tanimura, N., S. Saitoh, F. Matsumoto, S. Akashi-Takamura, and K. Miyake. 2008. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem. Biophys. Res. Commun. 368:94-99.
20. Li, S., A. Strelow, E. J. Fontana, and H. Wesche. 2002. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl. Acad. Sci. U.S.A. 99:5567-5572.
21. Dong, W., Y. Liu, J. Peng, L. Chen, T. Zou, H. Xiao, Z. Liu, W. Li, Y. Bu, and Y. Qi. 2006. The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4. J. Biol. Chem. 281:26029-26040.
22. Sun, L., L. Deng, C. K. Ea, Z. P. Xia, and Z. J. Chen. 2004. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14:289-301.
23. Kagan, J. C., T. Su, T. Horng, A. Chow, S. Akira, and R. Medzhitov. 2008. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9:361-368.
24. Neumann, M., and M. Naumann. 2007. Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J. 21:2642-2654.
25. Hacker, H., and M. Karin. 2006. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006:re13.
26. Anrather, J., G. Racchumi, and C. Iadecola. 2005. cis-acting, element-specific transcriptional activity of differentially phosphorylated nuclear factor-kappaB. J. Biol. Chem. 280:244-252.
27. Malek, S., Y. Chen, T. Huxford, and G. Ghosh. 2001. IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells. J. Biol. Chem. 276:45225-45235.
28. Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and M. Karin. 1997. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91:243-252.
29. Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and A. Rao. 1997. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860-866.
30. Windheim, M., M. Stafford, M. Peggie, and P. Cohen. 2008. Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol. Cell. Biol. 28:1783-1791.
31. Alkalay, I., A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and Y. Ben-Neriah. 1995. Stimulation-dependent IkappaBalpha phosphorylation marks the NF-kappaB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U.S.A. 92:10599-10603.
32. DiDonato, J. A., F. Mercurio, and M. Karin. 1995. Phosphorylation of IkappaBalpha precedes but is not sufficient for its dissociation from NF-kappaB. Mol. Cell. Biol. 15:1302-1311.
33. Kim, Y. W., R. J. Zhao, S. J. Park, J. R. Lee, I. J. Cho, C. H. Yang, S. G. Kim, and S. C. Kim. 2008. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br. J. Pharmacol. 154:165-173.
34. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13:85-94.
35. Swantek, J. L., L. Christerson, and M. H. Cobb. 1999. Lipopolysaccharide-induced tumor necrosis factor-alpha promoter activity is inhibitor of nuclear factor-kappaB kinase-dependent. J. Biol. chem. 274:11667-11671.
36. Davis, R. J. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103:239-252.
37. Ono, K., and J. Han. 2000. The p38 signal transduction pathway: activation and function. Cell. Signal.12:1-13.
38. Dong, C., R. J. Davis, and R. A. Flavell. 2002. MAP kinases in the immune response. Annu. Rev. Immunol. 20:55-72.
39. Kim, S. H., J. Kim, and R. P. Sharma. 2004. Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacol. Res. 49:433-439.
40. Zhu, W., J. S. Downey, J. Gu, F. Di Padova, H. Gram, and J. Han. 2000. Regulation of TNF expression by multiple mitogen-activated protein kinase pathways. J. Immunol. 164:6349-6358.
41. Guha, M., M. A. O'Connell, R. Pawlinski, A. Hollis, P. McGovern, S. F. Yan, D. Stern, and N. Mackman. 2001. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98:1429-1439.
42. Kang, Y. J., J. Chen, M. Otsuka, J. Mols, S. Ren, Y. Wang, and J. Han. 2008. Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. J. Immunol. 180:5075-5082.
43. Beinke, S., M. J. Robinson, M. Hugunin, and S. C. Ley. 2004. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol. Cell. Biol. 24:9658-9667.
44. Kim, H. J., H. S. Lee, Y. H. Chong, and J. L. Kang. 2006. p38 Mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 225:36-47.
45. Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420:885-891.
46. Murakami, T., C. Mataki, C. Nagao, M. Umetani, Y. Wada, M. Ishii, S. Tsutsumi, T. Kohro, A. Saiura, H. Aburatani, T. Hamakubo, and T. Kodama. 2000. The gene expression profile of human umbilical vein endothelial cells stimulated by tumor necrosis factor alpha using DNA microarray analysis. J. Atheroscler. Thromb. 7:39-44.
47. Murakami, A., K. Kawabata, T. Koshiba, G. Gao, Y. Nakamura, K. Koshimizu, and H. Ohigashi. 2000. Nitric oxide synthase is induced in tumor promoter-sensitive, but not tumor promoter-resistant, JB6 mouse epidermal cells cocultured with interferon-gamma-stimulated RAW 264.7 cells: the role of tumor necrosis factor-alpha. Cancer Res. 60:6326-6331.
48. Montecucco, F., S. Steffens, F. Burger, A. Da Costa, G. Bianchi, M. Bertolotto, F. Mach, F. Dallegri, and L. Ottonello. 2008. Tumor necrosis factor-alpha (TNF-alpha) induces integrin CD11b/CD18 (Mac-1) up-regulation and migration to the CC chemokine CCL3 (MIP-1alpha) on human neutrophils through defined signalling pathways. Cell. Signal. 20:557-568.
49. Chen, C. C., Y. T. Sun, J. J. Chen, and Y. J. Chang. 2001. Tumor necrosis factor-alpha-induced cyclooxygenase-2 expression via sequential activation of ceramide-dependent mitogen-activated protein kinases, and IkappaB kinase 1/2 in human alveolar epithelial cells. Mol. Pharmacol. 59:493-500.
50. Kramer, F., J. Torzewski, J. Kamenz, K. Veit, V. Hombach, J. Dedio, and Y. Ivashchenko. 2008. Interleukin-1beta stimulates acute phase response and C-reactive protein synthesis by inducing an NF-kappaB- and C/EBPbeta-dependent autocrine interleukin-6 loop. Mol. Immunol. 45:2678-2689.
51. Hou, T., S. Ray, and A. R. Brasier. 2007. The functional role of an interleukin 6-inducible CDK9. STAT3 complex in human gamma-fibrinogen gene expression. J. Biol. Chem. 282:37091-37102.
52. Bas, S., B. R. Gauthier, U. Spenato, S. Stingelin, and C. Gabay. 2004. CD14 is an acute-phase protein. J. Immunol. 172:4470-4479.
53. Hagihara, K., T. Nishikawa, T. Isobe, J. Song, Y. Sugamata, and K. Yoshizaki. 2004. IL-6 plays a critical role in the synergistic induction of human serum amyloid A (SAA) gene when stimulated with proinflammatory cytokines as analyzed with an SAA isoform real-time quantitative RT-PCR assay system. Biochem. Biophys. Res. Commun. 314:363-369.
54. Ootsuka, Y., W. W. Blessing, A. A. Steiner, and A. A. Romanovsky. 2008. Fever response to intravenous prostaglandin E2 is mediated by the brain but does not require afferent vagal signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294:R1294-1303.
55. Blatteis, C. M. 2006. Endotoxic fever: New concepts of its regulation suggest new approaches to its management. Pharmacol. Ther. 111:194-223.
56. Penido, C., A. Vieira-de-Abreu, M. T. Bozza, H. C. Castro-Faria-Neto, and P. T. Bozza. 2003. Role of monocyte chemotactic protein-1/CC chemokine ligand 2 on gammadelta T lymphocyte trafficking during inflammation induced by lipopolysaccharide or Mycobacterium bovis bacille Calmette-Guerin. J. Immunol. 171:6788-6794.
57. Li, X., D. Klintman, Q. Liu, T. Sato, B. Jeppsson, and H. Thorlacius. 2004. Critical role of CXC chemokines in endotoxemic liver injury in mice. J. Leukoc. Biol. 75:443-452.
58. Bultinck, J., P. Sips, L. Vakaet, P. Brouckaert, and A. Cauwels. 2006. Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells: in vivo iNOS expression pattern in (septic) shock. FASEB J. 20:2363-2365.
59. Sun, M. W., M. F. Zhong, J. Gu, F. L. Qian, J. Z. Gu, and H. Chen. 2008. Effects of different levels of exercise volume on endothelium-dependent vasodilation: roles of nitric oxide synthase and heme oxygenase. Hypertens. Res. 31:805-816.
60. Cerwinka, W. H., D. Cooper, C. F. Krieglstein, M. Feelisch, and D. N. Granger. 2002. Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am. J. Physiol. 282:H1111-1117.
61. Hickey, M. J., K. A. Sharkey, E. G. Sihota, P. H. Reinhardt, J. D. Macmicking, C. Nathan, and P. Kubes. 1997. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J. 11:955-964.
62. Strunk, V., K. Hahnenkamp, M. Schneuing, L. G. Fischer, and G. F. Rich. 2001. Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation. Anesth. Analg. 92:681-687.
63. Szallasi, A., D. N. Cortright, C. A. Blum, and S. R. Eid. 2007. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov. 6:357-372.
64. Caterina, M. J., M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius. 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816-824.
65. Nilius, B., G. Owsianik, T. Voets, and J. A. Peters. 2007. Transient receptor potential cation channels in disease. Physiol. Rev. 87:165-217.
66. Huang, J., X. Zhang, and P. A. McNaughton. 2006. Modulation of temperature-sensitive TRP channels. Semin. Cell Dev. Biol. 17:638-645.
67. Caterina, M. J., T. A. Rosen, M. Tominaga, A. J. Brake, and D. Julius. 1999. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436-441.
68. Smith, G. D., M. J. Gunthorpe, R. E. Kelsell, P. D. Hayes, P. Reilly, P. Facer, J. E. Wright, J. C. Jerman, J. P. Walhin, L. Ooi, J. Egerton, K. J. Charles, D. Smart, A. D. Randall, P. Anand, and J. B. Davis. 2002. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186-190.
69. Guler, A. D., H. Lee, T. Iida, I. Shimizu, M. Tominaga, and M. Caterina. 2002. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22:6408-6414.
70. Peier, A. M., A. Moqrich, A. C. Hergarden, A. J. Reeve, D. A. Andersson, G. M. Story, T. J. Earley, I. Dragoni, P. McIntyre, S. Bevan, and A. Patapoutian. 2002. A TRP channel that senses cold stimuli and menthol. Cell 108:705-715.
71. Story, G. M., A. M. Peier, A. J. Reeve, S. R. Eid, J. Mosbacher, T. R. Hricik, T. J. Earley, A. C. Hergarden, D. A. Andersson, S. W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian. 2003. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819-829.
72. Numazaki, M., T. Tominaga, H. Toyooka, and M. Tominaga. 2002. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J. Biol. Chem. 277:13375-13378.
73. Mohapatra, D. P., and C. Nau. 2005. Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J. Biol. Chem. 280:13424-13432.
74. Vetter, I., W. Cheng, M. Peiris, B. D. Wyse, S. J. Roberts-Thomson, J. Zheng, G. R. Monteith, and P. J. Cabot. 2008. Rapid, opioid-sensitive mechanisms involved in transient receptor potential vanilloid 1 sensitization. J. Biol. Chem. 283:19540-19550.
75. Zhang, X., J. Huang, and P. A. McNaughton. 2005. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 24:4211-4223.
76. Jung, J., J. S. Shin, S. Y. Lee, S. W. Hwang, J. Koo, H. Cho, and U. Oh. 2004. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol. Chem. 279:7048-7054.
77. Jeske, N. A., A. M. Patwardhan, N. Gamper, T. J. Price, A. N. Akopian, and K. M. Hargreaves. 2006. Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons. J. Biol. Chem. 281:32879-32890.
78. Liu, B., C. Zhang, and F. Qin. 2005. Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4, 5-bisphosphate. J. Neurosci. 25:4835-4843.
79. Moriyama, T., T. Higashi, K. Togashi, T. Iida, E. Segi, Y. Sugimoto, T. Tominaga, S. Narumiya, and M. Tominaga. 2005. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain 1:3.
80. Zhang, N., S. Inan, A. Cowan, R. Sun, J. M. Wang, T. J. Rogers, M. Caterina, and J. J. Oppenheim. 2005. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc. Natl. Acad. Sci. U.S.A. 102:4536-4541.
81. Negri, L., R. Lattanzi, E. Giannini, M. Colucci, F. Margheriti, P. Melchiorri, V. Vellani, H. Tian, M. De Felice, and F. Porreca. 2006. Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J. Neurosci. 26:6716-6727.
82. Scotland, R. S., S. Chauhan, C. Davis, C. De Felipe, S. Hunt, J. Kabir, P. Kotsonis, U. Oh, and A. Ahluwalia. 2004. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction. Circ. Res. 95:1027-1034.
83. Wu, M., N. Komori, C. Qin, J. P. Farber, B. Linderoth, and R. D. Foreman. 2007. Roles of peripheral terminals of transient receptor potential vanilloid-1 containing sensory fibers in spinal cord stimulation-induced peripheral vasodilation. Brain Res. 1156:80-92.
84. Lin, Q., D. Li, X. Xu, X. Zou, and L. Fang. 2007. Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin. Mol. Pain 3:30.
85. Novakova-Tousova, K., L. Vyklicky, K. Susankova, J. Benedikt, A. Samad, J. Teisinger, and V. Vlachova. 2007. Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience 149:144-154.
86. Caterina, M. J., A. Leffler, A. B. Malmberg, W. J. Martin, J. Trafton, K. R. Petersen-Zeitz, M. Koltzenburg, A. I. Basbaum, and D. Julius. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306-313.
87. Gunthorpe, M. J., S. L. Hannan, D. Smart, J. C. Jerman, S. Arpino, G. D. Smith, S. Brough, J. Wright, J. Egerton, S. C. Lappin, V. A. Holland, K. Winborn, M. Thompson, H. K. Rami, A. Randall, and J. B. Davis. 2007. Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. J. Pharmacol. Exp. Ther. 321:1183-1192.
88. El Kouhen, R., C. S. Surowy, B. R. Bianchi, T. R. Neelands, H. A. McDonald, W. Niforatos, A. Gomtsyan, C. H. Lee, P. Honore, J. P. Sullivan, M. F. Jarvis, and C. R. Faltynek. 2005. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl- benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J. Pharmacol. Exp. Ther. 314:400-409.
89. Gavva, N. R., R. Tamir, Y. Qu, L. Klionsky, T. J. Zhang, D. Immke, J. Wang, D. Zhu, T. W. Vanderah, F. Porreca, E. M. Doherty, M. H. Norman, K. D. Wild, A. W. Bannon, J. C. Louis, and J. J. Treanor. 2005. AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J. Pharmacol. Exp. Ther. 313:474-484.
90. Basu, S., and P. Srivastava. 2005. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. Proc. Natl. Acad. Sci. U.S.A.102:5120-5125.
91. Kim, S. R., S. U. Kim, U. Oh, and B. K. Jin. 2006. Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. J. Immunol. 177:4322-4329.
92. Agopyan, N., T. Bhatti, S. Yu, and S. A. Simon. 2003. Vanilloid receptor activation by 2- and 10-microm particles induces responses leading to apoptosis in human airway epithelial cells. Toxicol. Appl. Pharmacol. 192:21-35.
93. Waning, J., J. Vriens, G. Owsianik, L. Stuwe, S. Mally, A. Fabian, C. Frippiat, B. Nilius, and A. Schwab. 2007. A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 42:17-25.
94. Zhang, L. L., D. Yan Liu, L. Q. Ma, Z. D. Luo, T. B. Cao, J. Zhong, Z. C. Yan, L. J. Wang, Z. G. Zhao, S. J. Zhu, M. Schrader, F. Thilo, Z. M. Zhu, and M. Tepel. 2007. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Cir. Res. 100:1063-1070.
95. Razavi, R., Y. Chan, F. N. Afifiyan, X. J. Liu, X. Wan, J. Yantha, H. Tsui, L. Tang, S. Tsai, P. Santamaria, J. P. Driver, D. Serreze, M. W. Salter, and H. M. Dosch. 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127:1123-1135.
96. Trevisani, M., D. Gazzieri, F. Benvenuti, B. Campi, Q. T. Dinh, D. A. Groneberg, M. Rigoni, X. Emonds-Alt, C. Creminon, A. Fischer, P. Geppetti, and S. Harrison. 2004. Ethanol causes inflammation in the airways by a neurogenic and TRPV1-dependent mechanism. J. Pharmacol. Exp. Ther. 309:1167-1173.
97. Xu, G.-Y., J. H. Winston, M. Shenoy, H. Yin, S. Pendyala, and P. J. Pasricha. 2007. Transient receptor potential vanilloid 1 mediates hyperalgesia and is up-regulated in rats with chronic pancreatitis. Gastroenterology 133:1282-1292.
98. Yiangou, Y., P. Facer, N. H. Dyer, C. L. Chan, C. Knowles, N. S. Williams, and P. Anand. 2001. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357:1338-1339.
99. Hensellek, S., P. Brell, H. G. Schaible, R. Brauer, and G. Segond von Banchet. 2007. The cytokine TNFalpha increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol. Cell. Neurosci. 36:381-391.
100. Southall, M. D., T. Li, L. S. Gharibova, Y. Pei, G. D. Nicol, and J. B. Travers. 2003. Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J. Pharmacol. Exp. Ther. 304:217-222.
101. Li, W. H., Y. M. Lee, J. Y. Kim, S. Kang, S. Kim, K. H. Kim, C. H. Park, and J. H. Chung. 2007. Transient receptor potential vanilloid-1 mediates heat-shock-induced matrix metalloproteinase-1 expression in human epidermal keratinocytes. J. Invest. Dermatol. 127:2328-2335.
102. Zhang, F., H. Yang, Z. Wang, S. Mergler, H. Liu, T. Kawakita, S. D. Tachado, Z. Pan, J. E. Capo-Aponte, U. Pleyer, H. Koziel, W. W. Kao, and P. S. Reinach. 2007. Transient receptor potential vanilloid 1 activation induces inflammatory cytokine release in corneal epithelium through MAPK signaling. J. Cell. Physiol. 213:730-739.
103. Iida, T., I. Shimizu, M. L. Nealen, A. Campbell, and M. Caterina. 2005. Attenuated fever response in mice lacking TRPV1. Neurosci. Lett. 378:28-33.
104. Clark, N., J. Keeble, E. S. Fernandes, A. Starr, L. Liang, D. Sugden, P. de Winter, and S. D. Brain. 2007. The transient receptor potential vanilloid 1 (TRPV1) receptor protects against the onset of sepsis after endotoxin. FASEB J. 21:3747-3755.
105. Helyes, Z., K. Elekes, J. Nemeth, G. Pozsgai, K. Sandor, L. Kereskai, R. Borzsei, E. Pinter, A. Szabo, and J. Szolcsanyi. 2007. Role of transient receptor potential vanilloid 1 receptors in endotoxin-induced airway inflammation in the mouse. Am. J. Physiol. 292:L1173-1181.
106. Orliac, M. L., R. N. Peroni, T. Abramoff, I. Neuman, E. J. Podesta, and E. Adler-Graschinsky. 2007. Increases in vanilloid TRPV1 receptor protein and CGRP content during endotoxemia in rats. Eur. J. Pharmacol. 566:145-152.
107. Mbalaviele, G., Y. Abu-Amer, A. Meng, R. Jaiswal, S. Beck, M. F. Pittenger, M. A. Thiede, and D. R. Marshak. 2000. Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J. Biol. Chem. 275:14388-14393.
108. Chen, C. W., S. T. Lee, W. T. Wu, W. M. Fu, F. M. Ho, and W. W. Lin. 2003. Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages. Br. J. Pharmacol. 140:1077-1087.
109. Kim, C. S., T. Kawada, B. S. Kim, I. S. Han, S. Y. Choe, T. Kurata, and R. Yu. 2003. Capsaicin exhibits anti-inflammatory property by inhibiting IkappaB-alpha degradation in LPS-stimulated peritoneal macrophages. Cell. Signal. 15:299-306.
110. Li, C. H., J. H. Wang, and H. P. Redmond. 2006. Bacterial lipoprotein-induced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation. J. Leukoc. Biol. 79:867-875.
111. Medvedev, A. E., A. Lentschat, L. M. Wahl, D. T. Golenbock, and S. N. Vogel. 2002. Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. J. Immunol. 169:5209-5216.
112. Chen, B. C., W. T. Wu, F. M. Ho, and W. W. Lin. 2002. Inhibition of interleukin-1beta -induced NF-kappaB activation by calcium/calmodulin-dependent protein kinase kinase occurs through Akt activation associated with interleukin-1 receptor-associated kinase phosphorylation and uncoupling of MyD88. J. Biol. Chem. 277:24169-24179.
113. Wadachi, R., and K. M. Hargreaves. 2006. Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J. Dent. Res. 85:49-53.
114. Goswami, C., M. Dreger, R. Jahnel, O. Bogen, C. Gillen, and F. Hucho. 2004. Identification and characterization of a Ca2+-sensitive interaction of the vanilloid receptor TRPV1 with tubulin. J. Neurochem. 91:1092-1103.
115. Numazaki, M., T. Tominaga, K. Takeuchi, N. Murayama, H. Toyooka, and M. Tominaga. 2003. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc. Natl. Acad. Sci. U.S.A.100:8002-8006.
116. Jin, X., N. Morsy, J. Winston, P. J. Pasricha, K. Garrett, and H. I. Akbarali. 2004. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am J. Physiol. Cell. Physiol. 287:C558-563.
117. Chuang, H. H., E. D. Prescott, H. Kong, S. Shields, S. E. Jordt, A. I. Basbaum, M. V. Chao, and D. Julius. 2001. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957-962.
118. Chen, B. C., and W. W. Lin. 2001. PKC- and ERK-dependent activation of I kappaB kinase by lipopolysaccharide in macrophages: enhancement by P2Y receptor-mediated CaMK activation. Br. J. Pharmacol. 134:1055-1065.
119. Leu, T. H., S. Charoenfuprasert, C. K. Yen, C. W. Fan, and M. C. Maa. 2006. Lipopolysaccharide-induced c-Src expression plays a role in nitric oxide and TNFalpha secretion in macrophages. Mol. Immunol. 43:308-316.
120. Lee, H. S., C. Moon, H. W. Lee, E. M. Park, M. S. Cho, and J. L. Kang. 2007. Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. J. Immunol. 179:7001-7011.
121. Ma, W., S. Mishra, K. Gee, J. P. Mishra, D. Nandan, N. E. Reiner, J. B. Angel, and A. Kumar. 2007. Cyclosporin A and FK506 inhibit IL-12p40 production through the calmodulin/calmodulin-dependent protein kinase-activated phosphoinositide 3-kinase in lipopolysaccharide-stimulated human monocytic cells. J. Biol.Chem. 282:13351-13362.
122. Medvedev, A. E., W. Piao, J. Shoenfelt, S. H. Rhee, H. Chen, S. Basu, L. M. Wahl, M. J. Fenton, and S. N. Vogel. 2007. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J. Biol.Chem. 282:16042-16053.
123. Bryant, P., M. Shumate, G. Yumet, C. H. Lang, T. C. Vary, and R. N. Cooney. 2003. Capsaicin-sensitive nerves regulate the metabolic response to abdominal sepsis. J. Surg. Res. 112:152-161.
124. Demirbilek, S., M. O. Ersoy, S. Demirbilek, A. Karaman, N. Gurbuz, N. Bayraktar, and M. Bayraktar. 2004. Small-dose capsaicin reduces systemic inflammatory responses in septic rats. Anesth. Analg. 99:1501-1507
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊