跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳念岐
研究生(外文):Chen, Nien-Chi
論文名稱:飼養溫度對金目鱸(Lates calcarifer)幼魚成長表現、攝食量及體組成之影響
論文名稱(外文):The effects of water temperature on the growth performance, feed intake and body composition of juvenile barramundi (Lates calcarifer)
指導教授:林鈺鴻
指導教授(外文):Lin, Yu-Hung
口試委員:鍾國仁鄭達智林鈺鴻
口試委員(外文):Jhong,Guo-JenCheng, Ta-ChihLin, Yu-Hung
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水產養殖系所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:47
中文關鍵詞:金目鱸溫度成長飼料轉換率攝食量
外文關鍵詞:Lates calcarifertemperaturegrowthfeed conversion ratiofeed intake
相關次數:
  • 被引用被引用:5
  • 點閱點閱:3576
  • 評分評分:
  • 下載下載:170
  • 收藏至我的研究室書目清單書目收藏:0
論文摘要內容:
本研究探討飼養溫度對金目鱸幼魚成長表現、攝食量及體組成之影響。實驗使用初重約10 g之金目鱸幼魚,分別飼養於5種不同溫度(23 °C、26 °C、29 °C、32 °C和35 °C)系統,每組三重複,每日投餵商業飼料一次直至飽食,實驗為期30天。實驗結果顯示:飼養溫度並不影響金目鱸之活存率(p >0.05),且各溫度處理組存活率均為100 %。比較各實驗組溫度, 29 °C到 32 °C溫度範圍內時,攝食量及特定生長率(SGR)均顯著最高(p < 0.05),26 °C及35 °C次之,以23 °C組最低。29 °C與 32°C飼養溫度組之飼料轉換率顯著低於其他飼養溫度組。飼養溫度29 °C到 32°C時,魚體粗脂肪含量低於,但粗蛋白含量高於其餘各組。實驗結果顯示,29 °C與 32°C為金目鱸幼魚成長最適飼養溫度。

Abstract:
The study was to evaluate the effects of water temperature on growth, feed intake and body composition of juvenile barramundi (Lates calcarifer). Triplicate groups of fish (initial wt:10 g) were reared in recirculating system with five temperature (23 °C, 26 °C, 29 °C, 32 °C and 35 °C) for 30 days. Survival (100%) were the same (p > 0.05) among all treatments. Feed intake and specific growth rate (SGR) were the highest (p < 0.05) in 29 °C and 32 °C rearing group, followed by 26 °C and 35 °C rearing group, and the lowest in 23 °C rearing group. Fish reared in 29 °C and 32 °C show lower feed conversion ratio than other treatments. When the water temperature were 29 °C and 32 °C, body lipid content was lower but protein content was higher than other treatments. The results suggest that the adequate rearing temperature are 29 °C and 32 °C.

目錄
摘要..............I
Abstract.........II
誌謝..............III
表目錄............VII
圖目錄............VIII
第1章 前言.......1
第2章 文獻回顧......3
2.1金目鱸之介紹.....3
2.1.1金目鱸科學分類地位與分佈情形.....3
2.1.2型態特徵.....3
2.1.3生活史......4
2.1.4金目鱸人工養殖培育流程.........5
2.1.5臺灣金目鱸養殖現況..........6
2.2溫度與魚類行為的關係........8
2.2.1溫度..........8
2.2.2溫度與魚類的關係...........8
2.2.3溫度對魚類成長上的影響...........8
2.2.4溫度對魚類性別和性成熟之影響.........9
2.2.5溫度對魚類營養與代謝之影響.........11

2.3氣候變遷的影響.........11
2.3.1氣候暖化之產生.........11
2.3.2氣候暖化對水產生物的衝擊.............12
2.3.3氣候變遷對魚類生殖生態的影響..........13
2.3.4極端氣候對海洋漁業的影響.............13
2.3.5氣候暖化對水產養殖的衝擊.............14
第3章 材料與方法.........15
3.1實驗魚隻和飼養條件........15
3.2魚隻馴化.............15
3.3實驗設計.............15
3.4實驗水溫.............16
3.5 實驗飼養模式......... 16
3.6成份分析..............17
3.7 各項指標計算公式......19
3.8 統計分析.............20
第4章 結果.......21
4.1成長表現......21
4.2魚隻活存率.... 21
4.3飼料轉換率與攝餌率..... 21
4.4化學體組成分析........ 22
4.4.1粗脂肪..............22
4.4.2粗蛋白............. 22
4.4.3水分............... 22
4.4.4灰分............... 22
4.5蛋白質效率(Protein efficiency ratio).......22
4.6溫度與成長之關係.........23
第5章 討論...............29
5.1溫度對成長的影響.........29
5.2溫度對攝食及飼料效益的影響............29
5.3適合成長溫度範圍之極限溫度對金目鱸成長與攝食之影響......30
5.4溫度對魚體化學體組成與蛋白質利用之影響.........31
5.5溫度與成長之間的關係..........33
5.6產業應用價值.................34
第6章 結論......................35
參考文獻.................36
作者簡介.................47

表目錄
Table 1. Characteristics of gonad stages in the Asian Seabass, Lates calcarifer as described by Guiguen et al. ................................5
Table 2. Mean temperature (±S.E.) in each treatment during the experimental period.......................16
Table 3. Mean fish weight at the beginning and the end of experiment and the feed intake over the experiment for each group of fish.................................23

圖目錄
Fig. 1 Diagram of wild type Asian seabass migration.....4
Fig. 2 A flow chart of nurturing fry and developing adult fish................7
Fig. 3 Specific growth rate of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05).......24
Fig. 4 Survival rate of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05)........24
Fig. 5 Feed conversion rate of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05).......25
Fig. 6 Feed intake rate of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05)........ 25
Fig. 7 Crude lipid of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05).........26
Fig. 8 Crude protein of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05)..........26
Fig. 9 Moisture of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05)........27
Fig. 10 Ash of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05).................27
Fig. 11 Protein efficiency ratio of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05). ................28
Fig. 12 Thermal-unit growth coefficients of juvenile barramundi reared at different temperature for 30 day. Different letter indicate significantly difference (p < 0.05)................28






中華民國台灣地區漁業統計年報,2014。行政院農業委員會漁業署。
王友慈,2011。臺灣周邊海域漁場環境變遷與漁業調適。行政院農委會水產試驗所。
台灣農家要覽,2005。行政院農業委員會。 
胡隱昌、曾素梅,1996。尖吻鱸胚胎及仔、稚魚發育的形態特徵研究。第二屆全國水產學術研討會論文集。
劉富光,2012a。氣候變遷對水產生物及其生態環境的影響。行政院農委會水產試驗所。
劉富光,2012b。從氣候變遷談水產養殖發展及淡水資源利用的策略。行政院農委會水產試驗所。
環境資訊中心,2007。台灣環境資訊協會。取自:
http://e-info.org.tw/node/25727
Anacleto, P., Maulvault, A. L., Barrento, S., Mendes, R., Nunes, M. L., Rosa, R., Marques, A. (2013). Physiological responses to depuration and transport of native and exotic clams at different temperatures. Aquaculture, 408, 136-146.
Andersen, N. G., Riis-Vestergaard, J. (2003). The effects of food consumption rate, body size and temperature on net food conversion efficiency in saithe and whiting. Journal of Fish Biology, 62, 395-412.
Anderson, T. A., Forrester, J. (2001). Administration of oestradiol to barramundi, Lates Calcarifer, Induces Protandrous Sex Change. pp. 155-164. In: H.I.Th. Goos, R.K. Rastogi, H.Vaudry, R. Pierantoni (Eds.), Perspective in Comparative Endocrinology, Unity and Diversity, Monduzzi Editore, Bologna, Napoli, Italy.
AOAC (Association of Official Analytical Chemists), 1995. Official Methods of Analysis, 16th edn. AOAC, Arlington, VA, USA.

Austreng, E. (1978). Digestibility determination in fish using chromic oxide marking and analysis of different segments of the gastrointestinal tract. Aquaculture, 13, 265-272.
Azevedo, P. A., Cho, Y. C., Leeson, S., Bureau, D. P. (1998). Effects of feeding level and water temperature on growth, nutrient and energy utilization and waste outputs of rainbow trout (Oncorhynchus mykiss). Aquatic Living Resources, 11, 227-238.
Barlow, C., Williams, K., Rimmer, M., 1996. Asian Seabass culture in Australia. Infofish International, 2, 26–33.
Baroiller, J. F., Guiguen, Y. (1999). Endocrine and environmental aspects of sex differentiation in fish. Cellular and Molecular Life Sciences CMLS, 55, 910-931.
Bertram, M. G., Saaristo, M., Baumgartner, J. B., Johnstone, C. P., Allinson, M., Allinson, G., Wong, B. B. (2015). Sex in troubled waters: Widespread agricultural contaminant disrupts reproductive behaviour in fish. Hormones and Behavior, 70, 85-91.
Björnsson, B., Steinarsson, A., Oddgeirsson, M. (2001). Optimal temperature for growth and feed conversion of immature cod (Gadus morhua L.). ICES Journal of Marine Science: Journal du Conseil, 58, 29-38.
Blaber, S. J., Milton, D. A., Salini, J. P. (2008). The biology of barramundi (Lates calcarifer) in the Fly River system. Developments in Earth and Environmental Sciences, 9, 411-426.
Blazquez, M., Gonzalez, A., Papadaki, M., Mylonas, C., Piferrer, F. (2008). Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European Seabass (Dicentrarchus labrax). General and Comparative Endocrinology, 158, 95-101.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical biochemistry, 72, 248-254.
Brett, R., Groves, D. (1979). Physiological energetics. pp. 599-675. In: Hoar, W. S., Randall, D. J., Brett, J. R. (Eds.), Bioenergetics and Growth. Fish Physiology, vol. VIII. Academic Press, London,
Burel, C., Person-Le Ruyet, J., Gaumet, F., Le Roux, A., Sévére, A., Boeuf, G. (1996). Effects of temperature on growth and metabolism in juvenile turbot. Journal of Fish Biology, 49, 678-692.
Campbell, H. A., Fraser, K. P., Peck, L. S., Bishop, C. M., Egginton, S. (2007). Life in the fast lane: the free-ranging activity, heart rate and metabolism of an Antarctic fish tracked in temperate waters. Journal of Experimental Marine Biology and Ecology, 349, 142-151.
Campinho, A., Moutou, A., Power, D.M. (2004). Temperature sensitivity of skeletal ontogeny in Oreochromis mossambicus. Journal of Fish Biology, 65, 1003-1025.
Carrillo, M., Bromage, N. (1989). The effects of modifications in photoperiod on spawning time, ovarian development egg quality in the sea bass (Dicentrarchus labrax). Aquaculture, 81, 351-365.
Cho, C. Y., Bureau, D. P. (1998). Development of bioenergetic models and the Fish-PrFEQ software to estimate production, feeding ration and waste output in aquaculture. Aquatic Living Resources, 11, 199-210.
Cho, C. Y., Kaushik, S. J. (1990). Nutritional energetic in fish: energy and protein utilization in rainbow trout (Salmo gairdneri). World review of Nutrition and Dietetics, 61, 132-172.
Corey, P. D., Leith, D. A., English, M. J. (1983). A growth model for coho salmon including effects of varying ration allotments and temperature. Aquaculture, 30, 125-143.
D’Cotta, H., Fostier, A., Guiguen, Y., Govoroun, M., Baroiller, J. F. (2001). Aromatase plays a key role during normal and temperature-induced sex differentiation of Tilapia Oreochromis niloticus. Molecular Reproduction and Development, 59, 265-276.
Davis, T. L. O. (1985). Seasonal changes in gonadal maturity, and abundance of larvae and early juveniles of barramundi, Lates Calcarifer (Bloch), in Van Diemen Gulf and the Gulf of Carpentaria. Marine and Freshwater Research, 36, 177-190.
Delvin, R. H., Nagahama, Y. (2002). Sex determination and sex differentiation in fish: an overview of genetic, physiological and environmental influences. Aquaculture, 208, 191-364.
Folch, J., Lees, M., Sloane-Stanley, G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497-509.
Foss, A., Evensen, T. H., Øiestad, V. (2002). Effect of hypoxia and hyperoxia on growth andfood conversion efficiency in the spotted wolfish Anarhichas minor. Aquaculture Research, 33, 437-444.
Foss, A., Imsland, A. K., Roth, B., Schram, E., Stefansson, S.O. (2007). Interactive effects of oxygen saturation and ammonia on growth and blood physiology in juvenile turbot. Aquaculture, 271, 244-251.
Fostier, A., Jalabert, B., Billard, R., Breton, B., Zohar, Y. (1983). The gonadal steroids. pp. 277-372. In: W.S. Hoar, D.J. Randall, E.M. Donaldson (Eds.) Fish Physiology and Reproduction. Academic Press, London.
Glencross, B. D. (2006). Nutritional management of barramundi, Lates calcarifer — a review. Aquaculture Nutrition, 12, 291-309.
Glencross, B. D. (2008). A factorial growth and feed utilisation model for barramundi, Lates calcarifer based on Australian production conditions. Aquaculture Nutrition, 14, 360-373.
Glencross, B. D. (2009). Reduced water oxygen levels affect maximal feed intake, but not protein or energy utilization by rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 15, 1-8.
Glencross, B. D., Felsing, M. (2006). Influence of fish size and water temperature on the metabolic demand for oxygen by barramundi, Lates calcarifer, in freshwater. Aquaculture Research, 37, 1055-1062.
Guiguen, Y., Cauty, C., Fostier, A., Fuchs, J., Jalabert, B. (1994). Reproductive cycle and sex inversion of the seabass, Lates Calcarifer, reared in sea cages in French Polynesia: histological and morphometric description. Environmental Biology of Fishes, 39, 231-247.
Guiguen, Y., Fostier, A., Piferrer, F., Chang, C. F. (2010). Ovarian aromatase and estrogen: a pivotal role for gonadal sex differentiation and sex change in fish. General and Comparative Endocrinology, 165, 352-366.
Guiguen, Y., Jalabert, B. (1993). Changes in plasma and gonadal steroid hormones in relation to the reproductive cycle and the sex inversion process in the protandrous seabass, Lates Calcarifer. General and Comparative Endocrinology, 92, 327-338.
Guiguen, Y., Jalabert, B., Benett, A., Fostier, A. (1995). Gonadal in vitro androstenedione metabolism and changes in some plasma and gonadal steroid hormones during sex inversion of the protandrous Seabass, Lates Calcarifer. General and Comparative Endocrinology, 100, 106-118.
Houlihan, D. F., Hall, S. J., Gray, C., Noble, B. S. (1988). Growth rates and protein turnover in Atlantic cod, Gadus morhua. Canadian Journal of Fisheries and Aquatic Sciences, 45, 951-964.
Imsland, A. K., Atle, F., Snorri, G. (2001). The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture, 198, 353-367.
Imsland, A. K., Foss, A., Nævdal, G., Cross, T., Bonga, S. W., Ham, E. V., Stefansson, S.O. (2000). Countergradient variation in growth and food conversion efficiency of juvenile turbot. Journal of Fish Biology, 57, 1213-1226.
Imsland, A. K., Foss, A., Sparboe, L. O., Sigurdsson, S. (2006). The effect of temperature and fish size on growth and feed efficiency ratio of juvenile spotted wolfish Anarhichas minor. Journal of Fish Biology, 68, 1107-1122.
Imsland, A. K., Schram, E., Roth, B., Schelvis-Smit, R., Kloet, K. (2007). Improving growth in juvenile turbot (Scophthalmus maximus) by rearing fish in switched temperature regimes. Aquaculture International, 15, 403-407.
Imsland, A. K., Sunde, L. M., Folkvord, A., Stefansson, S.O. (1996). The interaction of temperature and fish size on growth of juvenile turbot. Journal of Fish Biology, 49, 926-940.
Iwama, G. K., Tautz, A. F. (1981). A Simple Growth Model for Salmonids in Hatcheries. Canadian Journal of Fisheries and Aquatic Sciences, 38, 649-656.
Jana, S. N., Garg, S. K., Patra, B. C. (2006). Effect of inland water salinity on growth performance and nutritional physiology in growing milkfish, Chanos chanos (Forsskal): field and laboratory studies. Journal of Applied Ichthyology, 22, 25-34.
Jirsa D., Guillaume, P., Frederic, T., Barrows, D., Davis A., Drawbridge M. (2013). First-limiting amino acids in soybean-based diets for white seabass Atractoscion nobilis. Aquaculture, 414, 167-172.
Jobling, M. (1994). Environmental Biology of Fishes. Springer, Netherlands. PP. 151–163.
Jobling, M. (2003). The thermal growth coefficient (TGC) model of fish growth: a cautionary note. Aquaculture Research, 34, 581-584.
Jonassen, T. M., Imsland, A. K., Stefansson, S. O. (1999). The interaction of temperature and size on growth of juvenile Atlantic halibut. Journal of Fish Biology, 54, 556-572.
Katersky, R. B., Carter, C. G. (2005). Growth efficiency of juvenile barramundi, Lates Calcarifer at high temperature. Aquaculture, 250, 775-780.
Katersky, R. B., Carter, C. G. (2007). A preliminary study on growth and protein synthesis of juvenile barramundi, Lates calcarifer at different temperatures. Aquaculture, 267, 157-164.
Kaushik, S. J. (1980). Influence of nutritional status on the daily patterns of nitrogen excretion in the carp (Cyprinus carpio L.) and the rainbow trout (Salmo gairdneri R.). Reproduction Nutrition Développement, 20, 1751-1765.
Kitano, T., Takamune, K., Kobayashi, T., Nagahama, Y., Abe, S. I. (1999). Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). Journal of Molecular Endocrinology, 23, 167-176.
Koskela, J., Pirhonen, J., Jobling, M. (1997). Feed intake, growth rate and body composition of juvenile Baltic salmon exposed to different constant temperatures. Aquaculture International, 5, 351-360.
Larsson, S., Berglund, I. (2005). The effect of temperature on the growth energetic, growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populations. Journal of Thermal Biology, 30, 29-36.
Li, G. L., Liu, X. C., Lin, H. R. (2007). Seasonal change of serium sex steroids concentration and aromatase activity of gonad and brain in redspotted grouper (Epinephelus akaara). Animal Reproduction Science, 99, 156-166
Liu, J., Cui, Y., Liu, Y. (1998). Food consumption and growth of two piscivorous fishes, the mandarin fish and the Chinese snakehead. Journal of Fish Biology, 53, 1071-1083.
McCarthy, I., Moksness, E., Pavlov, D.A. (1998). The effects of temperature on growth rate and growth efficiency of juvenile common wolfish. Aquaculture International, 6, 207-218.
McCarthy, I. D., Moksness, E., Pavlov, D. A., Houlihan, D. F. (1999). Effects of water temperature on protein synthesis and protein growth in juvenile Atlantic wolfish (Anarhichas lupus). Canadian Journal of Fisheries and Aquatic Sciences, 56, 231-241.
Michel, B., Glencross, B., Austen, K., Hawkins, W. (2010). The effects of temperature and size on the growth, energy budget and waste outputs of barramundi (Lates calcarifer). Aquaculture, 306, 160-166.
Moore, R., (1979). Natural sex inversions in the giant perch (Lates Calcarifer). Marine and Freshwater Research, 30, 803-813.
Morgan, M. J., Wright, P. J., Rideout, R. M. (2013). Effect of age and temperature on spawning time in two gadoid species. Fisheries Research, 138, 42-51.
Neidetcher, S. K., Hurst, T. P., Ciannelli, L., Logerwell, E. A. (2014). Spawning phenology and geography of Aleutian Islands and eastern Bering Sea Pacific cod (Gadus macrocephalus). Deep Sea Research Part II: Topical Studies in Oceanography, 109, 204-214.
Nilsson, G. E., Östlund-Nilsson, S., Munday, P. L. (2010). Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. Comparative Biochemistry and Physiology Part A: Molecular &; Integrative Physiology, 156, 389-393.
Nurdiani, R., Zeng, C.S. (2007). Effects of temperature and salinity on the survival and development of mud crab, Scylla serrata (Forsskal), larvae. Aquaculture Research, 38, 1529-1538.
Okuzawa, K., Gen, K. (2013). High water temperature impairs ovarian activity and gene expression in the brain–pituitary–gonadal axis in female red seabream during the spawning season. General and Comparative Endocrinology, 194, 24-30.
Ospina-Alvarez, N., Piferrer., F. (2008). Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS One, 3, 28-37.
Paloheimo, J.E., Dickie, L.M. (1966). Food and growth of fishes. II. Effects of food and temperature on the relation between metabolism and body weight. Journal of the Fisheries Board of Canada, 23, 869-908.
Pankhurst, N.W., Conroy, A.M. (1987). Seasonal changes in reproductive condition and plasma levels of sex steroids in the blue cod, parapercis colias. Fish Physiology and Biochemistry, 4, 15-26.
Paolo, P., Emilio, D. (2014). Hypothesis: gonadal temperature influences sex-specific imprinting. Epigenomics, 5, 294-299.
Parsell, D. A., Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annual Review of Genetics, 27, 437-496.
Patino, R., Davis, K. B., Schoore, J., Uguz, C., Strssmann, C. A., Parker, N. C., Simco, B. A., Goudie, C. A. (1996). Sex differentiation of channel catfish gonads: normal development and effects of temperature. Journal of Experimental Zoology, 276, 209-218.
Pedersen, T., Jobling, M. (1989). Growth rates of large, sexually mature cod Gadus morhua, in relation to condition and temperature during an annual cycle. Aquaculture, 81, 161-168.
Pederson, C. L. (1987). Energy budgets for juvenile rainbow trout at various oxygen concentrations. Aquaculture, 62, 289-298.
Person-Le Ruyet, J., Mahé, K., Le Bayon, N., Le Delliou, H. (2004). Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture, 237, 269-280.
Qiang, J., Xu, P., Wang, H.Z., Li, R.W., Wang, H. (2012). Combined effect of temperature, salinity and density on the growth and feed utilization of Nile tilapia juveniles (Oreochromis niloticus). Aquaculture Research, 43, 1344-1356.
Sawusdee A., Antony C. J., Ken J. C., Hauton C. (2015). Improvements in the physiological performance of European flat oysters Ostrea edulis (Linnaeus, 1758) cultured on elevated reef structures: Implications for oyster restoration. Aquaculture, 444, 41-48.
Schipp, G. (1996). Barramundi farming in the Northern Territory, Darwin, Aquaculture Branch, Department of Primary Industry and Fisheries. Hormones and Behavior, 70, 85-91.
Strussmann, C. A., Patino, R. (1995). Temperatrue manipulation of sex differentiation in fish. pp. 153-157. In: F.W., Goetz and P. Tomas (Eds.). Proc., Fifth International Symposium Reproductive Physiology of Fish. Austin, Texas.
Sun, L., Chen, H. (2009). Effects of ration and temperature on growth, fecal production, nitrogenous excretion and energy budget of juvenile cobia (Rachycentron canadum). Aquaculture, 292, 197-206.
Sun, L., Chen, H. (2014). Effects ofwater temperature and fish size on growth and bioenergetics of cobia (Rachycentron canadum). Aquaculture, 426, 172-180.
Sun, L., Chen, H., Huang, L. (2006). Effect of temperature on growth and energy budget of juvenile cobia (Rachycentron canadum). Aquaculture, 261, 872-878.
Sun, L., Chen, H., Huang, L. (2007). Growth, faecal production, nitrogenous excretion and energy budget of juvenile yellow grouper (Epinephelus awoara) relative to ration level. Aquaculture, 264, 228-235.
Tómas, Á., Björn, B., Agnar, S., Matthías, O. (2009). Effects of temperature and body weight on growth rate and feed conversion ratio in turbot (Scophthalmus maximus). Aquaculture, 295, 218-225.
Williams, K. C., Barlow, C. G. (1999). Dietary requirement and optimal feeding practices for barramundi (Lates calcarifer). Project 92/63, Final Report to Fisheries R&;D Corporation, Canberra, Australia, pp. 95.
Williams, K. C., Barlow, C. G., Rodgers, L., Agcopra, C. (2006). Dietary composition manipulation to enhance the performance of juvenile barramundi (Lates calcarifer Bloch) reared in cool water. Aquaculture Research, 37, 914-927.
Xie, S., Cui, Y., Yang, Y., Liu, J. (1997). Energy budget of Nile tilapia (Oreochromis niloticus) in relation to ration size. Aquaculture, 154, 57-68.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊