跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佩玟
研究生(外文):Li, Pei-Wen
論文名稱:以TPU@silica改質聚乳酸生質複合材料之性質研究
論文名稱(外文):Preparation and Characterizations of Poly (lactic acid) Biobased Composites using Thermoplastic Polyurethane@Silica (TPU@silica) Particles.
指導教授:賴森茂賴森茂引用關係
指導教授(外文):Lai, Sun-Mou
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:166
中文關鍵詞:聚乳酸二氧化矽複合材料熱塑性聚氨酯
外文關鍵詞:Polylactic acidSilicaCompositesThermoplastic Polyurethane
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1107
  • 評分評分:
  • 下載下載:183
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠凝膠法製備出不同大小的二氧化矽粒子 (50、200 nm),並對二氧化矽表面進行改質,使用的改質劑 (coupling agent) 為 3-aminopropyltriethoxysilane (APTES) 及 thermoplastic polyurethane (TPU),實驗路徑選擇先將 thermoplastic polyurethane (TPU) 與 APTES 反應後,再接枝於二氧化矽粒子表面,製成 TPU@silica composites particles,silica:APTES:TPU 重量比為 10:1:2。改質過的二氧化矽表面電位有下降趨勢,而以 TGA 內插法粗步估算,TPU-APTES 接於二氧化矽的比例,50 nm 的二氧化矽 為7.3%,高於微米等級 200 nm 的 3.3%,與 NMR 相比對,TAS50 於 T2、T3 的吸收峰確實較為顯著,且於 FT-IR 測定上發現,TPU-APTES 以化學鍵結與物理吸附兩種方式存在二氧化矽表面上。本實驗為降低塑膠產業對石油資源的依賴,選擇以植物為來源且可生分解的聚乳酸為基材,以熔融混煉的方式,將兩種不同大小的無機顆粒混入基材中,製成聚乳酸/二氧化矽複合材料,TEM 顯示,微米等級的二氧化矽改質後,於基材中分散效果最佳,而 DSC 以兩種不同降溫速率,探討複合材料的冷結晶行為,得知改質後的 TPU@silica composites particles可視為異相成核劑,與 PLA 間存在有一定的作用力,加強了 PLA 的冷結晶行為,從 POM 輔助照片中,可觀察到非等溫程序下的冷結晶型態,且混入改質後的微米顆粒,由於分散效果最佳,使得複合材料在穿透度上有提升趨勢。
In order to reduce the dependence of petroleum-derived plastics, this works aims on the development of biodegradable poly(lactic acid) (PLA)/organic modified silica composites materials. In this study, the organic modifier, 3-aminopropyltriethoxysilane (APTES) and thermoplastic polyurethane (TPU), were used to modify silica with different sizes by sol-gel method to prepare TPU@silica composites particles, followed by melt blending with PLA. The modification of TPU-APTES onto silica was confirmed through FTIR (Fourier transform infrared spectra), NMR (Nuclear magnetic resonance), ESCA (Electron spectroscopy for chemical analysis system), TGA (Thermogravimetric analysis), zeta potential assessment. Before the modification, the peak assigned to Q3 corresponding to Si(OSi)3(OH) with one available Si-OH dominated is the most obvious peak, and after modification the assigned T2, and T3 referring to RSi(OSi) 2(OH), RSi(OSi)3, were revealed. Meanwhile the ester type C=O and aliphatic C-H were observed for the modified silica in FTIR spectra too. Also the Si(2p3/2), Si(2s), O(1s), C(1s), N(1s) assigned can be characterized to confirm that TPU-APTES was grafted onto silica surface. DSC (Differential scanning calorimetry) indicated that the TPU@silica composites particles can promote the crystallization of PLA. SEM (Scanning electron microscopy) and TEM (Transmission electron microscopy) showed the modified micro size silica filled system have better dispersion and transmittance than nano size system.
摘 要 I
ABSTRACTII
目 錄 III
圖目錄 VI
表目錄 XIV
第一章 序 論 1
1.1 前言 1
1.2 研究背景 4
第二章 基礎理論與文獻回顧 11
2.1 聚乳酸 (Polylactic acid, PLA) 11
2.2 溶膠凝膠法 (Sol-gel) 14
2.3 熱塑性聚氨酯 (Thermoplasticpolurethane, TPU) 21
第三章 實 驗 24
3.1 實驗藥品 24
3.2 實驗儀器 26
3.3 實驗配方表 30
3.4 實驗流程 31
3.4.1 不同大小 silica 製備 31
3.4.2 Modified silica system 32
3.4.3 PLA/silica composites 33
3.5 實驗方法 34
3.5.1 Unmodified silica system 34
3.5.2 Modified silica system 35
3.5.3 PLA/silica composites materials 35
3.6 各項性質測定 37
3.6.1 固態核磁共振光譜儀 (NMR) 37
3.6.2 傅立葉轉換紅外線光譜儀 (FTIR) 37
3.6.3 化學分析影像能譜儀 (ESCA) 38
3.6.4 穿透式電子顯微鏡 (TEM) 38
3.6.5 雷射粒徑分析儀 (Zetasizer Nano Series) 39
3.6.6 掃瞄式電子顯微鏡 (SEM) 39
3.6.7 熱重分析儀 (TGA) 40
3.6.8 示差掃瞄熱卡計 (DSC) 40
3.6.9 偏光顯微鏡 (POM) 40
3.6.10 X 光繞射分析儀 (XRD) 41
3.6.11 萬能拉力試驗機 41
3.6.12 動態機械性質分析儀 (DMA) 42
3.6.13 紫外線可視光分光光譜儀 (UV/VIS) 43
3.6.14 膠體滲透層析儀 (GPC) 43
第四章 結果與討論 44
4.1 固態核磁共振光譜儀 (NMR) 44
4.2 傅立葉轉換紅外線光譜儀 (FTIR) 49
4.3 化學分析影像能譜儀 (ESCA) 56
4.4 穿透式電子顯微鏡 (TEM) 64
4.4.1 Particles 64
4.4.2 PLA/silica composites 67
4.5 雷射粒徑分析儀 (Zetasizer Nano Series) 73
4.6 掃瞄式電子顯微鏡 (SEM) 77
4.7 熱重分析儀 (TGA) 93
4.8 示差掃瞄熱卡計 (DSC) 103
4.9 偏光顯微鏡 (POM) 117
4.10 X光繞射分析儀 (XRD) 126
4.11 萬能試驗拉力機 128
4.12 動態機械性質分析儀 (DMA) 133
4.13 紫外線可視光分光光譜儀 (UV/VIS) 139
4.14 膠體滲透層析儀 (GPC) 141
第五章 結 論 142
參考文獻 144
附件一 149
附件二 150


圖目錄
Fig. 1 Comparison of the mechanical properties of PLA with some common plastic packaging materials [4]. 2
Fig. 2 Possible morphologies of core shell particles [8]. 5
Fig. 3 @ http://www.specialchem4polymers.com/index.aspx. 8
Fig. 4 PP@silica [16]. 9
Fig. 5 TEM micrograph of silica particles [18]. 10
Fig. 6 Lactic acid structure. 12
Fig. 7 Different routes of the sol-gel processing [23]. 14
Fig. 8 Silica 水解縮合反應示意圖。 15
Fig. 9 Ostwald ripening [26]. 16
Fig. 10 Polymerization behavior of silica [26]. 17
Fig. 11 親電性取代反應 [27]。 17
Fig. 12 Effect of pH in the colloidal silica-water system [28] 18
Fig. 13 親核性取代反應 [29]。 19
Fig. 14 The phase diagram of TEOS, water and alcohol system (95% Ethanol, 5% H2O) at 25℃ [30]. 20
Fig. 15 Flow chart for prepared silica by sol-gel method. 31
Fig. 16 Flow chart for prepared TPU@silica particles. 32
Fig. 17 PLA/silica composites flowchart. 33
Fig. 18 The tensile testi specimen of ISO 37 typeⅢ. 42
Fig. 19 Solid-state 29Si NMR spectra of the silica particles. 47
Fig. 19-1 Solid-state 29Si NMR spectra of the silica particles. 48
Fig. 20 FT-IR spectrum of unmodified and modified particles. 52
Fig. 20-1 FT-IR spectrum of unmodified and modified particles. 53
Fig. 20-2 FT-IR spectrum of unmodified and modified particles. 53
Fig. 21 FT-IR spectrum of TPU film. 54
Fig. 22 ATR spectrum of TPU-APTES. 54
Fig. 22-1 ATR spectrum of TPU-APTES. 55
Fig. 22-2 ATR spectrum of TPU-APTES. 55
Fig. 23 ESCA wide scan spectrum of S50. 58
Fig. 24 ESCA wide scan spectrum of TAS50. 58
Fig. 25 ESCA wide scan spectrum of S200. 59
Fig. 26 ESCA wide scan spectrum of TAS200. 59
Fig. 27 ESCA silicon spectrum of 50 nm. 60
Fig. 28 ESCA silicon spectrum of 200 nm. 60
Fig. 29 ESCA oxygen spectrum of 50 nm. 61
Fig. 30 ESCA oxygen spectrum of 200 nm. 61
Fig. 31 ESCA carbon spectrum of 50 nm. 62
Fig. 32 ESCA oxygen spectrum of 200 nm. 62
Fig. 33 ESCA nitrogen spectrum of 50 nm. 63
Fig. 34 ESCA nitrogen spectrum of 200 nm. 63
Fig. 35 TEM micrographs of:(a) S50, (b) TAS50, (c) S200 and (d) TAS200. (magnification:50 kx;scale bar:200 nm) 65
Fig. 36 TEM micrographs of:(a) S50, (b) TAS50, (c) S200 and (d) TAS200. (magnification:100 kx; scale bar:200 nm) 66
Fig. 37 TEM micrograph of: (a) neat PLA, (b) PLA/S50, (c) PLA/TAS50 (d) PLA/S200, and (e) PLA/TAS200. (magnification: 5kx; scale bar 200 nm) 69
Fig. 38 TEM micrograph of: (a) neat PLA, (b) PLA/S50, (c) PLA/TAS50 (d) PLA/S200 and (e) PLA/TAS200. (magnification: 10 kx; scale bar 100 nm) 70
Fig. 39 TEM micrograph of: (a) neat PLA, (b) PLA/S50, (c) PLA/TAS50 (d) PLA/S200 and (e) PLA/TAS200. (magnification: 30 kx; scale bar 500 nm) 71
Fig. 40 TEM micrograph of: (a) neat PLA, (b) PLA/S50, (c) PLA/TAS50 (d) PLA/S200 and (e) PLA/TAS200. (magnification: 50 kx; scale bar 200 nm) 72
Fig. 41 Dynamic light scattering of S50 and TAS50. 74
Fig. 42 Dynamic light scattering of S200 and TAS200. 74
Fig. 43 Zetapotential in ethanol solution. 76
Fig. 44 SEM micrographs of neat PLA: (a) 1kx; (b) 2 kx; (c) 3 kx; (d) 4 kx; (e) 5 kx. 78
Fig. 45 SEM micrographs of 5 phr composites, left PLA/S50; right PLA/TAS50: (a), (f) 1kx; (b), (g) 2 kx; (c), (h) 3 kx; (d), (i) 4 kx; (e), (j)5 kx. 80
Fig. 46 SEM micrographs of 5 phr composites, left PLA/S200; right PLA/TAS200: (a), (f) 1kx; (b), (g) 2 kx; (c), (h) 3 kx; (d), (i) 4 kx; (e), (j)5 kx. 82
Fig. 47 SEM micrographs of 5 phr composites at 5 kx: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. 83
Fig. 48 SEM micrographs of PLA/silica composites: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. (magnification: 1 kx) 85
Fig. 49 SEM micrographs of PLA/silica composites: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. (magnification: 2 kx) 86
Fig. 50 SEM micrographs of PLA/silica composites: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. (magnification: 3 kx) 87
Fig. 51 SEM micrographs of PLA/silica composites: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. (magnification: 4 kx) 88
Fig. 52 SEM micrographs of PLA/silica composites: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. (magnification: 5 kx) 89
Fig. 53 SEM micrographs of PLA/silica composites: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. (magnification: 6 kx) 90
Fig. 54 SEM micrographs of PLA/silica composites: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. (magnification: 7 kx) 91
Fig. 55 SEM micrographs of PLA/silica composites: (a) neat PLA; (b) PLA/S50; (c) PLA/TAS50; (d) PLA/S200; (e) PLA/TAS200. (magnification: 8 kx) 92
Fig. 56 TGA curves of modified and unmodified silica with 50 nm. 96
Fig. 57 TGA curves of modified and unmodified silica with 50 nm. 96
Fig. 58 TGA curves of modified and unmodified silica with 200 nm. 97
Fig. 59 TGA curves of modified and unmodified silica with 200 nm. 97
Fig. 60 TGA curves of unmodified silica with 50 and 200 nm. 98
Fig. 61 TGA curves of unmodified silica with 50 and 200 nm. 98
Fig. 62 TGA curves of modified silica with 50 and 200 nm. 99
Fig. 63 TGA curves of modified silica with 50 and 200 nm. 99
Fig. 64 TGA curves of PLA/silica at 5 phr nanocomposites with 50 nm. 101
Fig. 65 TGA curves of PLA/silica at 5 phr composites with 200 nm. 101
Fig. 66 TGA curves of PLA/unmodified silica at 5 phr composites. 102
Fig. 67 TGA curves of PLA/modified silica at 5 phr composites. 102
Fig. 68 DSC glass trainsition temperature of PLA/silica composites. 110
Fig. 69 DSC melting temperature of PLA/silica composites. 111
Fig. 70 DSC cold crystallization temperature of PLA/silica composites. 111
Fig. 71 DSC melting enthalpy of PLA/silica composites. 112
Fig. 72 DSC cold crystalization enthalpy of PLA/silica composites. 112
Fig. 73 DSC cold crystallization curve of PLA/silica composites at 50 nm system (a) through 10℃/min cooling rate; (b) through 40℃/min cooling rate. 113
Fig. 74 DSC cold crystallization curve of PLA/silica composites at 200 nm system (a) through 10℃/min cooling rate; (b) through 40℃/min cooling rate. 114
Fig. 75 DSC hot crystallization curve of PLA/silica composites at 50 nm system (a) at a cooling rate of 10℃/min; (b) at a cooling rate of 40℃/min. 115
Fig. 76 DSC hot crystallization curve of PLA/silica composites at 200 nm system (a) at a cooling rate of 10℃/min; (b) at a cooling rate of 40℃/min. 116
Fig. 77 POM micrographs of neat PLA through 10℃/min cooling rate (magnification: 100x). 118
Fig. 78 POM micrographs of neat PLA/S50 through 10℃/min cooling rate (magnification: 100x). 119
Fig. 79 POM micrographs of neat PLA/S200 through 10℃/min cooling rate (magnification: 100x). 120
Fig. 80 POM micrographs of neat PLA/TAS50 through 10℃/min cooling rate (magnification: 100x). 121
Fig. 81 POM micrographs of neat PLA/TAS200 through 10℃/min cooling rate (magnification: 100x). 122
Fig. 82 POM micrographs at 200℃: (a) neat PLA, (b) PLA/S50, (c) PLA/TAS50, (d) PLA/S200, (e) PLA/TAS200 through 20℃/min heating rate (magnification: 100x). 123
Fig. 83 POM micrographs at 140℃: (a) neat PLA, (b) PLA/S50, (c) PLA/TAS50, (d) PLA/S200, (e) PLA/TAS200 through 10℃/min cooling rate (magnification: 100x). 124
Fig. 84 POM micrographs at 140℃: (a) neat PLA, (b) PLA/S50, (c) PLA/TAS50, (d) PLA/S200, (e) PLA/TAS200 through 40℃/min cooling rate (magnification: 100x). 125
Fig. 85 XRD patterns of PLA/silica 5 phr composites. 127
Fig. 86 XRD patterns of UV/VIS PLA/silica 5 phr composites. 127
Fig. 87 Stress-strain curve of PLA/silica 5 phr composites. 129
Fig. 88 Young’s modulus of PLA/silica 5 phr composites. 131
Fig. 89 Tensile strength of PLA/silica 5 phr composites. 131
Fig. 90 Elongation at break of PLA/silica 5 phr composites. 132
Fig. 91 Storage modulus (E’) of PLA/silica nanocomposites with 50 nm. 135
Fig. 92 Storage modulus (E’) of PLA/silica composites with 200 nm. 135
Fig. 91-1 Storage modulus (E’) of PLA/silica composites with 50 nm. 136
Fig. 92-1 Storage modulus (E’) of PLA/silica composites with 200 nm. 136
Fig. 93 Loss modulus (E”) of PLA/silica composites with 50 nm. 137
Fig. 94 Loss modulus (E”) of PLA/silica composites with 200 nm. 137
Fig. 95 Damping curves (tanδ) of PLA/silica composites with 50 nm. 138
Fig. 96 Damping curves (tanδ) of PLA/silica composites with 200 nm. 138
Fig. 97 Transmittance of PLA/silica composites. 140
Fig. 98 Transmittance of PLA/silica composites at 400 nm wavelength. 140
Fig. 99 FT-IR spectrum of TASX particles. 149
Fig. 99-1 FT-IR spectrum of TASX particles. 149
Fig. 100 DSC cuve of PLA/TAS50 composites under 10℃/min cooling rate. 150
Fig. 101 DSC cuve of PLA/TPU 5 phr under 10℃/min cooling rate. 151
Fig. 102 DSC cuve of PLA/TPU 5 phr under 40℃/min cooling rate. 151
Fig. 103 DSC cuve of PLA/S50A 5 phr under 10℃/min cooling rate. 152
Fig. 104 DSC cuve of PLA/S200A 5 phr under 10℃/min cooling rate. 152





表目錄
Table 1 Sol-gel recipe for different silica sizes [25] [34]. 30
Table 2 Modified silica system. 30
Table 3 Characteristic absorption peaks of FT-IR spectra of TPU@silica composites particles [6][18][32] [39] [46]. 51
Table 4 Z-Average size and zeta potential of silica in ethanol solution. 76
Table 5 Thermogravimetric analysis of TPU@silica composites particles. 94
Table 6 Estimated grafting degree. 95
Table 7 Thermogravimetric analysis of PLA/silica composites. 100
Table 8 DSC thermal analysis of PLA/silica composites under 10℃/min cooling rate. 105
Table 8-1 DSC thermal analysis of PLA/silica composites under 10℃/min cooling rate. 106
Table 9 DSC thermal analysis of PLA/silica composites under 40℃/min cooling rate. 108
Table 10 The mechanical properties of PLA/silica composites. 130
Table 11 Dynamic mechanical analysis of PLA/silica 5 phr composites. 134
Table 12 Blend PLA with different temperature 141
參考文獻
1.Chiu, F.-C.; Lai, S.-M.; Chen, Y.-L.; Lee, T.-H. “Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener”, Polymer, 46, 11600-11609 (2005).
2.98年中華民國環境保護統計年報
3.財團法人塑膠工業技術發展中心, 塑膠百年特刊, 8 (2008).
4.Dorgan, J.-R.; Lehermeier, H.; Mang, M. “Thermal and rheological properties of commercial-grade poly(lactic acid)s”, J. Polym. Environ., 8, 1 (2000).
5.Li, B.; Dong, F.-X.; Wang, X.-L.; Yang, J.; Wang, D.-Y.; Wang, Y.-Z. “Organically modified rectorite toughened poly(lactic acid): Nanostructures, crystallization and mechanical properties”, Eur. Polym. J., 45, 2996-3003(2009).
6.Zhu, A.; Diao, H.; Rong, Q.; Cai, A. “Preparation and properties of polylactide-silica nanocomposites”, J. Appl. Polym. Sci., 116, 2866-2873 (2010).
7.Wilkes, G. L.; Drier, B.; Huang, H.- H. “Ceramers-hybrid materials incorporating polymeric oligomeric species into inorganic glasses utilizing a sol-gel approach”, Abstracts of Papers of the American Chemical Society, 190, 109 (1985).
8.Ding, X.; Zhao, J.; Liu, Y.; Zhang, H.; Wang, Z. “Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization”, Materials Letters, 58, 3126-3130 (2004).
9.Zhang, K.; Zheng, L.; Zhang, X.; Chen, X.; Yang, B. “Silica-PMMA core-shell and hollow nanospheres”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 277, 145–150 (2006).
10.賴美冠,“應用不同乳化溶劑揮發法及奈米金於微粒包覆技術之研究”, 國立中正大學化學工程研究所博士論文 (2006).
11.Wang, Y.; Ke, Y.; Li, J.; Du, S.; Xia, Y. “Dispersion behavior of core–shell silica-polymer nanoparticles”, China Particuology, 5, 300-304 (2007).
12.Sertchook, H.; Elimelech, H.; Makarov, C.; Khalfin, R.; Cohen, Y.; Shuster, M. ; Babonneau, F.; Avnir , D. “Composite Particles of Polyethylene @ Silica”, J. Am. Chem. Soc., 129, 98-108 (2007).
13.Lien, Y.-H.; Wu, T.-M. “The application of thermosensitive magnetic nanoparticles in drug delivery”, Adv. Mater. Res., 47-50, 528-531 (2008).
14.Jesson, D.-A.; Abel, M.-L.; Hay, J.-N.; Smith, P.-A.; Watts, J.-F. “Organic–inorganic hybrid nanoparticles: surface characteristics and interactions with a polyester resin”, Langmuir, 22, 5144-5151 (2006).
15.Wu, Z.; Xiang, H.; Kim, TH.; Chun, M.S.; Lee, KT. “Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane”, J. Colloid Interface Sci., 304 , 119-124 (2006).
16.Wu, W.; Wagner, M. H.; Xu. Z. D. “Surface treatment mechanism of nano-SiO2 and the properties of PP/nano-SiO2 composite materials”, Colloid Polym. Sci., 281, 550–555 (2003).
17.曾子凡, “聚乙烯/二氧化矽奈米複合材料之製備及物性分析”, 國立中興大學化學工程研究所碩士論文 (2002).
18.Avella, M.; Bondioli, F.; Cannillo,V.; Pace, ED.; Errico, ME.; Ferrari, A M.; Focher, B.; Malinconico, M. “Poly(e-caprolactone)-based nanocomposites: Influence of compatibilization on properties of poly(e-caprolactone)–silica nanocomposites”, Comp. Sci. Tech., 66, 886-894 (2006).
19.Zhang, J.-F.; Sun, X. “Mechanical Properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride” , Biomacromolecules, 5, 1446-1451 (2004).
20.Avella, M. et al. “Poly(lactic acid)-based biocomposites reinforced with kenaf fibers”, J. Appl. Polym. Sci., 108, 3542-3551 (2008).
21.Wang, H.; Fang, M.; Shi, T.; Zhai, L.; Tang, C., “Preparation of porous poly(lactic acid)/SiO2 hybrid microspheres”, J. Appl. Polym. Sci., 102, 679-683 (2006).
22.Zalzberg, L.; Avnir, D. “Biocompatible hybrid particles of poly(l-lactic acid)@silica”, J Sol-Gel Sci Technol., 48, 47-50 (2008).
23.Dimitriev, Y.; Ivanova, Y.; Iordanova, R. “History of sol-gel science and technology”, J. Univ. Chem. Tech. and Metallurgy, 43, 2, 181-192 (2008).
24.Brinker, C.- J.; Scherer, G.-W. Sol-gel science: the physics and chemistry of sol-gel processing, Published by Academic Press , 108 (1990).
25.Kim, J.-W.; Kim, L. U.; Kim, C. K. “Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites”, Biomacromolecules, 8, 215-222 (2007).
26.Lopez, P. J.; Coradin, T. “Biogenic silica patterning: simple chemistry or subtle biology? ”, ChemBioChem, 4, 251-259 (2003).
27.Rao, V. L.; Eshwar, M. C.; G. Babu, N.-J. Macromol. Sci-Chem., A23, 1079 (1986).
28.Iler, R. K. The Chemistry of Silica (Wiley, New York, 1979).
29.Huang, Z. H.; Qiu, K.-Y.; Wei, Y.-J. Polym. Sci., A53, 2403 (1997).
30.C. J. Brinker, K. D. Keefer, D. W. Schaefer, C. S. Ashley, J. Non-Cryst. Solids, 48, 47 (1982).
31.劉聖得, “熱塑性聚氨基甲酸酯/二氧化矽混成材料之製備及性質研究”,中國文化大學材料科學與奈米科技研究所碩士論文 (2004).
32.Vega-Baudrit, J.; Sibaja-Ballestero, M.; Vazquezb, P.; Torregrosa-Macia, R.; Martin-Martinez, J. M. “Properties of thermoplastic polyurethane adhesives containing nanosilicas with different specific surface area and silanol content”, Int. J. Adhes Adhes, 27, 469-479 (2007).
33.Jose, VB.; Virtudes, NB.; Patricia, V.; Jose, MMM. “Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives”, Int. J. Adhes. Adhes., 26, 378-387 (2006).
34.劉奕君, “多孔性聚乳酸/二氧化矽複合支架 的製備與特性研究”,國立中興大學材料科學與工程學研究所碩士學位論文 (2007).
35.吳泰緯, “幾丁聚醣奈米複合材料之製備及性質研究”, 中國文化大學材料科學與奈米科技研究所碩士論文 (2008).
36.Wen, X.; Lin, Y.; Han, C.; Zhang, K.; Ran, X.; Li, Y.; Dong, L. “Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding”, J.Appl.Polym. Sci., 114, 3379-3388 (2009).
37.蘇訓又, “水性聚胺酯樹脂_聚矽酸奈米複合材料之製備與性質之研究”,國立清華大學碩士論文 (2004).
38.Hepburn, C. “Polyurethane elastomers”, Applied Science Publishers LTD, (1982).
39.Ray, S.; Bhowmick, A. K. “Novel electron beam-modified surface-coated silica fillers: physical and chemical characteristics”, J. Appl. Polym. Sci., 83, 2255-2268 (2002).
40.Binner, J.; Zhang, Y. “Characterization of silicon carbide and silicon powders by XPS and zeta potential measurement”, J. Mater. Sci. LETT., 20, 123- 126 (2001).
41.Yang, F.; Chu,Y.; Ma, S.; Zhang, Y.; Liu, J. “Preparation of uniform silica/polypyrrole core/shell microspheres and polypyrrole hollow microspheres by the template of modified silica particles using different modified agents”, J. Colloid Interface Sci., 301, 470-478 (2006).
42.Percy, M.-J.; Amalvy, J.-I.; Barthet, C.; Armes, S.-P.; Greaves, S.-J.; Wattsb, J.- F.; Wiesec, H. “Surface characterization of vinyl polymer–silica colloidal nanocomposites using X-ray photoelectron spectroscopy”, J. Mater. Chem., 12, 697-702 (2002).
43.Zhu, Y.; Sun, D.-X. Zheng, H.; Wei, M.; Zhang, L.-M. “Improvement in properties of epoxy-based electrophoretic coating by silica/polyurethane nanocomposites”, J. Mater. Sci., 42, 545-550 (2007).
44.Shchukarev, A.; Rosenqvist, J.; Sjöberg, S. “XPS study of the silica–water interface”, J. of Electron Spectrosc., 137-140, 171-176 (2004).
45.Stoch, A; Stoch, J.; Rakowska, A. “An XPS and SEM study of silica sol-gel/metal substrate interaction”, Surf. Interface Anal., 22, 242-241 (1994).
46.Maria Chong, A.-S.; Zhao, X.-S. “Functionalization of SBA-15 with APTES and characterization of functionalized materials”, J. Phys. Chem. B, 107, 12650-12657 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊