跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 03:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳珮瑩
研究生(外文):Pei-Yieng Chen
論文名稱:啤酒釀造中丁二酮控制與種菌培養之研究
論文名稱(外文):Studies on the Control of Diacetyl Formation and the Cultivation of Seed Culture during Beer Brewing
指導教授:段國仁段國仁引用關係
指導教授(外文):Kow-Jen Duan
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:110
中文關鍵詞:啤酒丁二酮間歇通氣貯藏醱酵酵母
外文關鍵詞:beerdiacetylfermentationintermitted aerationstorageyeast
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1314
  • 評分評分:
  • 下載下載:128
  • 收藏至我的研究室書目清單書目收藏:2
丁二酮 ( diacetyl ) 為影響啤酒熟成風味的主要成份,其風味辨別閥值 ( flavour threshold ) 為0.15 mg/L。本研究主要探討在啤酒釀造過程中,於不同主醱酵溫度與貯酒溫度下對於丁二酮生成還原速率之影響。另外,培養優良酵母種菌並且擴大培養酵母量,以提供啤酒廠投殖所需酵母。探討在不同的通氣及饋料條件下培養對於酵母菌生長之影響。主要是利用間歇通氣方式,使酵母菌能於酒精醱酵環境下增殖。
本試驗使用的酵母分別為,來自著名啤酒品牌海尼根為底層醱酵的酵母及來自Trappist啤酒 ( WP530 ) 為頂層醱酵的酵母。海尼根酵母分別於10、15、20℃與酵母WP530於15、20、27℃下進行主醱酵程序。實驗結果得知,分別使用這兩種酵母在低溫下進行主醱酵,丁二酮還原速率皆較緩慢,啤酒中丁二酮含量有部分累積情形;反之於高溫下進行主醱酵,丁二酮還原速率較快且在啤酒中的含量較低。另外,將醱酵後之青啤酒於瓶內貯酒,結果顯示提高貯酒時的溫度,有助於加速丁二酮還原至辨別閥值以下,以縮短長時間的促熟過程。
在種菌培養上,以酵母WP530於5公升醱酵槽培養的最適條件:醱酵槽溫度控制在33℃、轉速設定至250 rpm、通氣量為2 L/min,以5N NaOH控制pH値在5 ± 0.1。醱酵過程中,以間歇通氣式批次醱酵培養 ( 每通氣3分鐘停止通氣10秒鐘 ),經過38小時後,菌體乾重可達到2.62 g/L,酒精濃度為28.9 g/L。以葡萄糖濃度275 g/L進行批次饋料醱酵培養,當菌體生長至對數生長的末期時,通氣方式改變為每間隔3分鐘通氣10秒鐘,於60小時後菌體乾重可達到8.22 g/L,酒精濃度為73.7 g/L。
Diacetyl was responsible for a buttery flavor in beer. The threshold concentration was lower than 0.15 mg/L. The present study was engaged in the effect of fermentation and storage temperature on the formation of diacetyl during beer brewing. Another topic of this study was to culture the yeast cells to reach a quantity needed for pitching in the beer brewing. Effects of aeration and fed-batch fermentation on yeast cell growth were investigated. Intermitted aeration was used to grow the yeast cell to make a physiological condition adative for ethanol fermentation.
A button fermenting yeast from a famous beer brand, Heineken, and a top fermenting yeast from a Trappist beer brand, WP530, were used in this study. The fermentation temperatures for Heineken yeast were 10, 15, 20 ℃ respectively, while that for yeast WP530 were 15, 20, 27 ℃ respectively. The reduction rates of diacetyl were lower for both Heineken and WP530 yeast during fermentation at lower temperature, resulting in the accumulation of diacetyl in beer. On the contrary, the reduction rates of diacetyl were quite high during fermentation at higher temperature, resulting in a low diacetyl concentation in beer. When the fermented beer was stored in bottle for aging, again, the reduction rate of diacetyl was high at higher temperature. Therefor, it took shorter time for the diacetyl to be decreased to the threshold concentration.
The WP530 yeast was cultured in a 5-liter jar fermenter under the following conditions: temperature, 33 ℃; agitation, 250 rpm; aeration rate, 2 L/min; pH, automatically controlled at 5.0 (±0.1) by addition of 5N NaOH. When intermitted aeration was used, a dry cell weight of 2.62 g/L and an ethanol concentration of 28.9 g/L were achieved after 38 hrs of cultivation. Another fermentation was performed by feeding a 275 g/L glucose solution. Feeding of glucose was started at the end of the exponential phase of yeast growth. Intermitted aeration for 10 sec at every 3 min interval was used for the fed-batch fermentation. A dry cell weight of 8.22 g/L and an ethanol concentration of 73.7 g/L were achieved after 60 hrs of cultivation.
中文摘要 I
英文摘要 III
目錄 V
圖目錄 IX
表目錄 XI
第一章 前言 1
第二章 文獻回顧 3
2.1啤酒 3
2.1.1啤酒之種類 3
2.1.1.1依滅菌情況分類 3
2.1.1.2依麥芽汁濃度分類 4
2.1.1.3依酵母性質及分類 4
2.1.1.4依醱酵方法來分類 5
2.1.1.5依啤酒色澤來分類 5
2.1.2啤酒之營養成分 6
2.2傳統啤酒釀造製程 9
2.2.1麥汁糖化 9
2.2.2麥汁煮沸 10
2.2.3主醱酵 11
2.2.3.1頂層醱酵 11
2.2.3.2底層醱酵 12
2.2.3.3主醱酵外觀狀態 12
2.2.3.4醱酵度 13
2.2.4酵母回收 14
2.2.5貯酒 15
2.2.5.1啤酒澄清 16
2.2.5.2啤酒冷安定 16
2.2.5.3啤酒穩定 17
2.3啤酒酵母 17
2.3.1啤酒酵母種類 17
2.3.2酵母生長 18
2.3.3酵母生理代謝 19
2.3.3.1糖類代謝 19
2.3.3.2氮的代謝 24
2.3.3.3氧的代謝 24
2.3.3.4硫的代謝 25
2.3.4酵母的其他代謝產物 25
2.3.4.1生青味物質 26
2.3.4.2芳香味物質 29
2.4丁二酮 30
2.4.1丁二酮簡介 30
2.4.2丁二酮關聯物質生成還原機構 31
2.4.3丁二酮去除新技術 32
第三章 材料與方法 37
3.1丁二酮控制 37
3.1.1材料儀器 37
3.1.2麥汁製備 37
3.1.3海尼根酵母於不同溫度下醱酵之影響 38
3.1.4海尼根酵母於不同溫度下貯酒之影響 38
3.1.5酵母WP530於不同溫度下醱酵之影響 38
3.1.6酵母WP530於不同溫度下貯酒之影響 39
3.2 Macro Dimethyl Glyoxime Method 39
3.2.1丁二酮收集試驗 39
3.2.1.1試劑配製 39
3.2.1.2實驗裝置 40
3.2.1.3操作步驟 41
3.2.2分析方法 42
3.2.2.1試劑配製 43
3.2.2.2儀器設備 44
3.2.2.3操作步驟 44
3.3酵母種菌培養 48
3.3.1使用菌株 48
3.3.2材料 48
3.3.2.1藥品來源 48
3.3.2.2主要儀器設備及器材 48
3.3.3培養基成分 50
3.3.3.1 Agar plate 50
3.3.3.2 Culture medium 50
3.3.3.3 Fermentation medium 50
3.3.3.4饋料成分 50
3.3.4培養基滅菌 51
3.3.5搖瓶培養 51
3.3.6全程通氣批次醱酵 51
3.3.7間歇式通氣批次醱酵於不同通氣條件下之影響 53
3.3.8間歇式通氣批次醱酵於不同饋料濃度條件下之影響 53
3.3.9醱酵控制 56
3.3.10醱酵分析系統 59
3.3.10.1pH值 59
3.3.10.2氧化還原電位 59
3.3.10.3溶氧值 59
3.3.11分析方法 60
3.3.11.1細胞乾重測定 60
3.3.11.2葡萄糖含量測定 60
3.3.11.3外觀糖度測定 60
3.3.11.4酒精含量測定 60
3.3.11.5醱酵能力 61
第四章 結果與討論 63
4.1丁二酮控制 63
4.1.1海尼根酵母於不同溫度下進行醱酵與貯酒之探討 64
4.1.1.1海尼根酵母於溫度10℃下醱酵其成分之變化 64
4.1.1.2海尼根酵母於溫度15℃下醱酵其成分之變化 66
4.1.1.3海尼根酵母於溫度20℃下醱酵其成分之變化 68
4.1.1.4海尼根酵母於不同溫度醱酵對丁二酮濃度之影響 70
4.1.1.5海尼根酵母於不同溫度下貯酒之影響 72
4.1.2酵母WP530於不同溫度下進行醱酵與貯酒之探討 75
4.1.2.1酵母WP530於溫度15℃下醱酵其成分之變化 76
4.1.2.2酵母WP530於溫度20℃下醱酵其成分之變化 78
4.1.2.3酵母WP530於溫度27℃下醱酵其成分之變化 80
4.1.2.4酵母WP530於不同溫度醱酵對丁二酮濃度之影響 82
4.1.2.5酵母WP530於不同溫度下貯酒之影響 84
4.2酵母種菌培養 88
4.2.1批次醱酵培養 88
4.2.1.1全程通氣批次醱酵培養 88
4.2.1.2間歇式通氣30秒停止通氣3分鐘批次醱酵培養 91
4.2.1.3間歇式通氣10秒停止通氣3分鐘批次醱酵培養 93
4.2.1.4不同通氣條件批次醱酵培養之影響 95
4.2.2批次饋料醱酵培養 98
4.2.2.1葡萄糖濃度為225 g/L批次饋料醱酵培養 98
4.2.2.2葡萄糖濃度為275 g/L批次饋料醱酵培養 100
4.2.2.3批次與批次饋料醱酵培養之比較 102
4.2.2.4不同葡萄糖濃度之批次饋料醱酵培養 102
第五章 結論 105
第六章 參考文獻 106
王美華. 1993. 丁二酮之控制技術. 製酒科技專論彙編. 15: 145-160.
林錦淡編著. 1983. 啤酒釀造技術. 華香園出版社. p187-195.
涂秀麗. 1998. 啤酒的異味2. 製酒科技專論彙編. 21: 47-50.
陳孝倫. 2000. 啤酒產品多樣化. 製酒科技專論彙編. 22: 304-310.
黃世佑,蘇遠志編著. 1997. 微生物化學工程學. 華香園出版社. p91-95.
黃癸林. 1981. 啤酒釀造之新技術. 製酒科技專論彙編. 3: 63-65.
American Society of Brewing Chemists. 1992. Method of Analysis, 8th ed. Beer-25A Diacetyl. The Society: St. Paul, MN.

Aschengree, N. H., S. Jepsen. 1992. Use of acetolactate decarboxylase in brewing fermentation. Proc. Conv. – Inst. Brew. (Aust. N. Z. Sect.) 22:80-83.

Baker, D. A. and B. H. Kirsop. 1973. Rapid beer production and conditioning using a plug fermentor. J. Inst. Brewing. 79: 487-494.

Bamforth, C. W. 2001. The flavour of beer – vicinal diketones. Brew. Guard. 130(8): 24–26.

Boulton, C. A., A. R. Jones, and E. Hinchliffe. 1991. Yeast physiological condition and fermentation performance. Eur. Brew. Conv. 23:358-392.

Boulton, C. A., W. G. Box, D. E. Quain, and S.W. Molzahn. 2001. Vicinal diketone reduction as a measure of yeast vitality. MBAA Technical Quarterly. 38(2):89-93.

Dulieu, C., M. Moll, J. Boudrant, and D. Poncelet. 2000. Improved Performances and Control of Beer Fermentation Using Encapsulated α-Acetolactate Decarboxylase and Modeling. Biotechnol. Prog. 16(6):958-965.

García, A.I., L.A. Garc¡a, and M. Djaz. 1994. Modelling of diacetyl production during beer fermentation. J. Inst. Brew., 100, 179-183.

Hanneman, W. 1999. Bringing Beer to a Faster Finish. MBAA Technical Quarterly. 36(2):167-170.

Hanneman, W. 2002. Reducing beer maturation time and retaining Quality. MBAA Technical Quarterly. 39(3): 149-155.

Inoue, T., K. Masuyama, Y. Yamamoto, Y. Kuroiwa, and K. Okada. 1968. Mechanish of diacetyl formation in beer. (PartⅠ. Presence of Material X and its Characters). Rept.Res. Lab. Kirin Brewery Co., Ltd., 11:1-8.

Inoue, T., K. Masuyama, Y. Yamamoto, Y. Kuroiwa, and K. Okada. 1968. Mechanish of diacetyl formation in beer. (PartⅡ. Identification of Material X with α-acetolactic acid). Rept.Res. Lab. Kirin Brewery Co., Ltd., 11:9-16.

Inoue, T., K. Masuyama, Y. Yamamoto, and K. Okada. 1968. Mechanism of diacetyl formation in beer. III. Mechanism of diacetyl formation. Rep. Res. Lab. Kirin Brew. Co. Ltd. 11:17–23.
Inoue, T., and K. Yamamoto. 1970. Determination of diacetyl in beer. (PartⅡ. Method for fractional determination of vicinal diketones and α-acetolactic acid). Rept.Res. Lab. Kirin Brewery Co., Ltd., 13:79-88.

Inoue, T. 1974. Influence of temperature on formation of acetohydroxy acids by brewer’s yeast. Rep. Res. Lab. Kirin Brew. Co. Ltd. 17:25–27.

Inoue, T. 1981. The relationship between the performance of yeast and acetohydroxy acid formation during wort fermentation. MBAA Technical Quarterly. 18:62-65.

Inoue, T., H. Murayama, K. Kajino, T. Kamiya, S. Mitsui, and M. Mawatari. 1991. Direct spontaneous conversion of acetolactate into non-diacetyl substance in fermenting wort, p. 369. In Proceedings of European Brewing Convention, 23rd Congress. IRL Press, Oxford.

Inoue, T. 1992. A review of diacetyl control technology. Proc. Conv. Inst. Brew. (Aust. N.Z. Sect.), Melbourne, 76–79.

Inoue, T. 1998. Diacetyl and globalization. MBAA Technical Quarterly. 35(3): 115-119.

Jepsen, S. 1993. Using ALDC to speed up fermentation. Brew. Guardian. 122:55-56.

Jepsen, S., and N. K. Pedersen. 1992. Practical experiences with a commercial alpha-acetolactate decarboxylase. 5th Intermational Brewing Technology Conference: 277-286.

Kabaktschieva, G., T. Ginova-Stojanova, and T. Dimitrova. 1994. The use of an enzyme solution with α-acetolactate decarboxylase activity. Brew. Bever. Ind. Int. 2: 22-24.

Kamiya, T., K. Kajino, H. Hiratsu, M. Mawatari, and T. Inoue. 1993. A new schema for the conversion of acetolactate in young beer. MBAA Technical Quarterly. 30(1): 14-15.

Linko, M., and J. Kronlof. 1991. Main Fermentation with Immobilized Yeast. Eur. Brew. Conv., Oxford; IRL Press:353-360.

Masschelein, C. A. 1986. The biochemistry of beer maturation. J. Inst. Brew. 92:213-219.

Meilgaard, M. C. 1975. Flavor chemistry of beer: Part2: Flavor and threshold of 239 aroma volatiles. MBAA Technical Quarterly. 12:151-168.

Okabe, M., A. Oda, Y. Soo Park, K. Noguchi, T. Okamoto, and S. Mitsui. 1994. Continuous beer fermentation by hight cell density culture of bottom brewer’s yeast. J. Ferment. Bioeng. 77: 41-45.

Otsuka, M., T. Mine, K. Ohuchi, and S. Ohmori. 1996. A dertoxication route for acetaldehyde: metabolism of diacetyl, acetoin, and 2,3-butanediol in liver homogenate and perfused liver of rats. Journal of Biochemistry. 119: 246-251.

Otsuka, M., N. Harada, T. Itabashi, and S. Ohmori. 1999. Blood and urinary levels of ethanol, acetaldehyde, and C4 compounds such as diacetyl, acetoin, and 2,3-butanediol in normal male students after ethanol ingestion. 17(2): 119-124.
Pajunen, E., V. Makinenn, and R. Gisler. 1987. Secondary fermentation with immobilized yeast. Eur. Brew. Conv., Oxford; IRL Press: Madrid. pp441-448.

Rose, A. H. and J. S. Harrison. 1971. The yeast., Academic Press, London and N.S. 2:337.

Stewart, J.D. and Rodriguez, S. 2001. Cloning, structure and activity of ketone reductases from baker’s yeast. Marcel Dekker: New York, ,pp. 175–208.

Trelea. I. C., S. Landaud, E. Latrille, and G. Gorrieu. 2001. Prediction of Confidence Limits for Diacetyl Concentration During Beer Fermentation. J. Am. Soc. Brew. Chem. 59(2):77-87.
.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top