跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 10:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李俊霆
研究生(外文):Chun-Ting Lee
論文名稱:因素數目決定法:特徵值大於一之再探
指導教授:翁儷禎翁儷禎引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:99
中文關鍵詞:因素分析因素數目決定法特徵值大於一
外文關鍵詞:factor analysisnumber of factorseigenvalue-greater-than-one rule
相關次數:
  • 被引用被引用:4
  • 點閱點閱:808
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
進行因素分析時,因素數目的決定為一關鍵步驟,決定過多或過少因素均會影響後續分析結果。Guttman(1954)與Kaiser(1960)提出以相關係數矩陣特徵值大於一的個數為因素數目後,此法即被廣泛地應用於各領域的研究中。但在比較各種因素數目決定法之優劣的研究中,特徵值大於一的表現並不佳。因此詳細探討此方法的表現可瞭解特徵值大於一能正確決定因素數目的情境,以供研究者參考,避免因誤用此法而得到不適當之因素結構。此外,亦可提供對過去的研究結果重新再思之依據,以評估過去以此法決定因素數目的研究是否適宜。本研究即藉由操弄因素負荷量、變項因素比、因素數目、樣本人數、及因素模式複雜度以瞭解特徵值大於一能正確決定因素數目的情境為何。研究結果顯示,當因素負荷量為.8且變項因素比為4以上時,特徵值大於一多能正確決定因素數目。若因素負荷量為.6,變項因素比為4時,此法在中樣本(n = 200)以上多能正確決定因素數目;變項因素比為6與8時,則需達大樣本(n = 500, 1000)時方能正確決定因素數目。而因素負荷量為.4時,此法僅在少數情境下能正確決定因素數目。
Determining the number of factors is a critical step in factor analysis. Since Guttman (1954) and Kaiser (1960) proposed the eigenvalue-greater-than-one rule to determine the number of factors, this rule has been widely applied in different research fields. Besides this rule, other researchers have proposed different methods to determine the number of factors. Previous researches on the comparison of the performances of different methods have repeatedly shown that the rule of eigenvalue-greater-than-one is the least accurate and the most unstable method. However, due to its popularity, a thorough evaluation on the method is called for. This study was therefore designed to reexamine the performance of this rule in order to offer appropriate guidelines for its application. Factor loading, the ratio of number of variables to factors, the number of factors, sample size, and the complexity of factor model were manipulated in the present study to investigate the performance of the eigenvalue-greater-than-one rule. The results showed that when the factor loading was high (.8), and the ratio of number of variables to factors was equal to or greater than 4, eigenvalue-greater-than-one rule could correctly determine the number of factors in most conditions. When factor loading was equal to .6, and the ratio of number of variables to factors equaled to 4, this rule performed well in identifying the number of factors if the sample size was equal to or greater than 200. When the ratio of number of variables to factors was 6 or 8 with a factor loading of .6, only under large samples (n = 500, 1000) could this rule yield the correct number of factors. When factor loading was equal to .4, eigenvalue-greater-than-one rule performed poorly in most conditions.
第一章 緒論 1
第一節 前言 1
第二節 因素分析的基本模式 3
第三節 特徵值大於一的理論基礎與發展 5
第四節 特徵值大於一方法的理論評論 7
第五節 影響特徵值大於一的因素 18
第二章 研究方法 26
第一節 研究變項 26
第二節 模擬資料產生歷程 30
第三節 資料分析 31
第三章 研究結果 33
第一節 模擬資料之特性 33
第二節 特徵值大於一之正確率 34
第四章 結論與討論 49
第一節 各研究變項對特徵值大於一之影響 49
第二節 建議 56
第三節 研究限制及未來研究方向 58
參考文獻 60
附錄 65
附錄A 斜交因素模式對應正交因素模式之因素負荷量 65
附錄B 模擬資料之分配 70
附錄C 特徵值大於一高估與低估因素數目之百分比 82
附錄D 不同因素負荷量下特徵值大於一決定因素數目之正確率
88
附錄E 母群特徵值與樣本特徵值之平均數與標準誤 91

圖目錄

圖一 變項因素比為4之三因素模型 29
圖二 因素模式複雜度與變項因素比之交互作用 38
圖三 因素負荷量與變項因素比之交互作用 39
圖四 樣本人數與因素負荷量之交互作用 41


表目錄

表一 本研究之研究變項與操弄情境 30
表二 各模式中觀察變項之四基本統計量的平均數與標準誤之範圍
34
表三 各模式中特徵值大於一正確率之五因子變異數分析表 36
表四 特徵值大於一於模式一至三中各研究變項操弄情境之正確率
37
表五 因素負荷量為.4時特徵值大於一正確決定因素數目之百分比
46
表六 因素負荷量為.6時特徵值大於一正確決定因素數目之百分比
47
表七 因素負荷量為.8時特徵值大於一正確決定因素數目之百分比
48
王嘉寧、翁儷禎(2002)。探索性因素分析國內應用之評估:1993至1999。「中華心理學刊」,44,239-251。
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 27, 509-540.
Cattell. R. B., & Vogelmann, S. (1977). A comprehensive trial of the scree and KG criteria for determining the number of factors. The Journal of Multivariate Behavioral Research, 12, 289-325.
Cliff, N. (1988). The eigenvalues-greater-than-one rule and the reliability of components. Psychological Bulletin, 103, 276-279.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd ed.) . Hillsdale, NJ: Lawrence Erlbaum Associates.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272-299.
Fava, J. L., & Velicer, W. F. (1992). The effects of overextraction on factor and component analysis. Multivariate Behavioral Research, 27, 387-415.
Fava, J. L., & Velicer, W. F. (1996). The effects of underextraction in factor and component analysis. Educational and Psychological Measurement, 56, 907-929.
Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The application of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel Psychology, 39, 291-314.
Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum.
Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68, 532-560.
Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19, 149-161.
Hakstian, A. R., Rogers, W. T., & Cattell, R. B. (1982). The number-of-factors rules with simulated data. Multivariate Behavioral Research, 17, 193-219.
Harman, H. H. (1976). Modern factor analysis (3rd ed.) Rev. Chicago: The University of Chicago Press.
Horn, J. L. (1965). A rational and test for the number of factors in factor analysis. Psychometrika, 30, 179-185.
Humphreys, L. G. (1964). Number of cases and number of factors: An example where N is very large. Educational and Psychological Measurement, 14, 457-466.
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 10, 141-151.
Kaiser, H. F. (1991). Coefficient alpha for a principal component and the Kaiser-Guttman rule. Psychological Reports, 68, 855-858.
Kaiser, H. F. (1992). On Cliff’s formula, the Kaiser-Guttman rule, and the number of factors. Perceptual and Motor Skills, 74, 595-598.
Kirk, R. E.(1995). Experimental design: Procedures for the behavioral sciences (3rd ed.).Pacific Grove, CA: Brooks/Cole.
Lawley, D. N. (1940). The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, 60, 64-82.
Lee, H. B., & Comrey, A. L. (1979). Distortions in a commonly used factor analytic procedure. Multivariate Behavioral Research, 14, 301-321.
Linn, R. L. (1968). A Monte Carlo approach to the number of factors problem. Psychometrika, 33, 37-71.
Milliken, G. A., & Johnson, D. E.(1984). Analysis of messy data(Vol. Ⅱ). Belmont, CA: Wadsworth.
Revelle, W., & Rocklin, T. (1979). Very simple structure: An alternative procedure for estimating the optimal number of interpretable factors. Multivariate Behavioral Research, 14, 403-414.
Stewart, M. E., Ebmeier, K. P., & Deary, I. J. (2004). The structure of Cloninger’s tridimensional personality questionnaire in a Bristish sample. Personality and Individual Difference, 36, 1403-1418.
Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, 34, 421-459.
Veldman, D. J. (1974). Simple structure and the number of factors problem. Multivariate Behavioral Research,9, 191-200.
Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41, 321-327.
Velicer, W. F., Eaton, C. A., & Fava, J. L. (2000). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components. In R. D. Goffin, & E. Helmes (Eds.), Problems and Solutions in Human Assessment: Honoring Douglas Jackson at Seventy. Boston: Kluwer.
Zwick, W. R., & Velicer, W. F. (1982). Factors influencing four rules for determining the number of components to retain. Multivariate Behavioral Research, 17, 253-269.
Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-442.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳曉悌、李汝禮(2003)。青少年吸菸之預防策略。基層醫學,18(7),173-176。
2. 楊雪華、陳端容、李蘭、柯姍如(2003)。雙親和同儕團體高中生吸菸行為的影響。醫學教育,7(2),36-46。
3. 陳錫琦(1994)。青少年吸菸意向研究。學校衛生,25,27-36。
4. 曾慶孝(1999)。綜論吸菸與戒菸對糖尿病患者發生心臟血管疾病的影響。中華公共衛生雜誌,18(4),241-246。
5. 黃淑貞(1997)。大學生健康信念、自我效能、社會支持與吸菸行為研究。學校衛生,31,30-44。
6. 黃松元(2000)。健康促進與健康教育(2版)。台北:師大書苑。
7. 黃松元、余玉眉、江永盛、陳政友、賴香如(1991)。台灣地區青少年吸菸行為調查研究。衛生教育論文集刊,5,45-66。
8. 姜博文、蔡世滋(1994)。青少年與吸菸。臨床醫學,33,151-156。
9. 周碧瑟(1997)。台灣地區在校生青少年藥物濫用盛行率與危險因子的探討。學生輔導,50,34-41。
10. 李景美(1998)。台北市中小學生對菸品廣告之反應研究。健康促進暨衛生教育雜誌,18,13-24。
11. 李景美(2003)。營造無菸校園初探-理論層面之觀點。學校衛生,42,97-110。
12. 李景美(2003)。青少年菸害預防-策略層面探討。醫護科技學刊,5(4),293-307。
13. 李景美(1980)。台北市國民中學三年級男生吸菸行為之情境及相 關家庭狀況因素之分析研究。學校衛生,17,38-47。
14. 李蘭、潘怜燕(2000)。台灣地區成年人之吸菸率與吸菸行為:八十八年度之全國性調查。中華公共衛生雜誌,19(6),423-436。
15. 潘怜燕、李蘭(1999)。臺灣地區成年人吸菸盛行率及其與教育和職業之關係:菸害防制法實施前的狀況(1993〜1996)。中華公共衛生雜誌,18(3),199-208。