跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莫居凡
研究生(外文):Chu-Fan Mo
論文名稱:建立小鼠tid1基因之條件式基因剔除模式
論文名稱(外文):Establishment of conditional knock out mouse model for tid1, a putative tumor suppressor gene.
指導教授:羅正汎
指導教授(外文):Jeng-Fan Lo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:101
中文關鍵詞:條件式基因剔除载體基因標的同質重組基因重組工程南方墨點法
外文關鍵詞:conditional knock out targeting vectorgene targetinghomologous recombinationrecombineeringSouthern blot hybridizationTid1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
Tid1 蛋白為果蠅抑癌器 Tid56 在哺乳類的同源蛋白。Tid1 會藉由其Dna J domain 與 heat shock protein 70 (Hsp70)此種chaperone 交互作用,進而參與蛋白複合體的合成與組裝。近年來一些研究證據顯示,Tid1是一個細胞內訊息傳遞路徑的調節者,與細胞存活、細胞增生,以及由壓力所誘發的許多細胞生理反應有關;另外一些細胞相關實驗則顯示,Tid1 對細胞而言有可能行使抑癌器的功能。然而至目前為止,由於欠缺一個良好的系統去觀察 Tid1 在生物體中參與癌化過程的作用機制,因此其是否真正在生物體中扮演抑癌器的角色,目前仍不清楚。
本論文主要目的即是建構小鼠 tid1 基因的條件式基因剔除載體,
進而以同質交換(homologous recombination)得到正確的小鼠胚胎幹細胞突變株,並期望日後以此突變株建立起實驗小鼠系統,用於將來能更進一步去了解 Tid1 的生理功能及其參與癌化過程的作用機制。我們所利用的是ㄧ改良式高效率 recombineering 法,在特殊的大腸菌株中建構出 tid1 基因的條件式基因剔除載體,計畫剔除的區域為 tid1 基因的promoter 至 exon 2,長約 5.8 kb,並使剔除之後的序列產生框架轉移突變(frame shift mutation),造成停止密碼(stop codon)提早出現,因而無法表現出完整的Tid1 蛋白。建構出此載體後以適當限制酶線性化,送入小鼠 129S6/SvEv-Tc1 品系的胚胎幹細胞進行同質重組,先經G418 和 ganciclovir 作初步篩選後,挑取 165 株具抗藥性幹細胞並抽取其基因體 DNA,再以南方墨點法確認 3’ 端及 5’ 端同質重組的正確性,結果共得到 1 株 3’ 端及 5’ 端皆有發生同質重組的胚胎幹細胞株。
Tid1 is the mammalian counterpart of the Drosophila tumor suppressor Tid56 and is also a DnaJ protein containing a conserved J domain through which it interacts with the heat shock protein 70 (Hsp70) family of chaperone proteins. Several reports have indicated that Tid1 functions as a
regulator in intracellular signaling pathways related to cell survival, senescence, and stress-induced cellular responses. Other reports raised the interesting possibility that it may exert tumor suppressor activity through
cell-based assays. However, the biological function of Tid1 and how it acts as a tumor suppressor in vivo remain unclear because of lack of an instrumental in vivo analysis system.
This research is focused on constructing a conditional knockout (CKO) targeting vector for mouse tid1 gene. We have employed a highly efficient recombineering-based method to make a tid1 CKO targeting vector in a specific Escherichia coli strain. The deleted region of tid1 gene is from putative promoter to exon 2, spanning approximate 5.8 kb genomic sequences, to not only disrupt the expression of tid1 transcript but also to cause a frameshift mutation with the consequence of early appearance of stop codon to generate null mutation. The constructed CKO targeting vector was subsequently linearized with restriction enzymes and electroporated into 129S6/SvEv-Tc1 ES cells to allow homologous recombination. The transformants were selected for their G418 and Ganciclovir (Ganc) resistance. Following electroporation, we screened 165 G418/Ganc resistant clones for correctly recombined clones by using Southern blot hybridization. We have up to now successfully obtained one clone of targeted ES cells with correct 5’ and 3' homologous recombination.
目錄
中文摘要---------------------------------------------------1
英文摘要---------------------------------------------------3
英文縮寫對照表---------------------------------------------5
緒論-------------------------------------------------------6
實驗材料及方法--------------------------------------------15
結果------------------------------------------------------47
討論------------------------------------------------------55
參考文獻--------------------------------------------------61
表--------------------------------------------------------68
圖--------------------------------------------------------70
1. Schilling, B. D. M., T. Syken, J. Vidal, M. Munger, K. A novel human DnaJ protein, hTid-1, a homolog of the Drosophila tumor suppressor protein Tid56, can interact with the human papillomavirus type 16 E7 oncoprotein. Virology, 247: 74-85, 1998.
2. Kurzik-Dumke, U. G., D. Renthrop, M. Gateff, E. Tumor suppression in Drosophila is causally related to the function of the lethal(2) tumorous imaginal discs gene, a dnaJ homolog. Dev Genet, 16: 64-76, 1995.
3. Yin, X. R.-A., M. Genomic organization and expression of the human tumorous imaginal disc (TID1) gene. Gene, 278: 201-210, 2001.
4. Silver, P. A. Way, J. C. Eukaryotic DnaJ homologs and the
specificity of Hsp70 activity. Cell, 74:5-6, 1993.
5. Laufen, T. Mayer, M.P. Beisel, C. Klostermeier, D. Mogk, A. Reinstein, J. Bukau, B.Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA, 96: 5452-5457, 1999.
6. Lo, J. F. H., M. Woo-Kim, S. Tian, B. Huang, J. F. Fearns, C. Takayama, S. Zapata, J. M. Yang, Y. Lee, J. D. Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the
Drosophila tumor suppressor l(2)tid, is critical for early embryonic development and cell survival. Mol Cell Biol, 24: 2226-3226, 2004.
7. Torregroza, I. Evans, T. Tid1 is a Smad-binding protein that can modulate Smad7 activity in developing embryos. Biochem J, 393: 311-320, 2006.
8. Hayashi, M. I.-Y., K. Yoshida, T. Wood, M. Fearns, C. Tatake, R. J. Lee, J. D. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med, 12: 128-132, 2006.
9. Syken, J. Macian, F. Agarwal, S. Rao, A. Munger, K. TID1, a mammalian homologue of the drosophila tumor suppressor lethal (2) tumorous imaginal discs, regulates activation - induced cell death in Th2 cells. Oncogene, 22:4636–4641, 2003.
10. Cheng, H. C., C. Shao, Z. Vidal, M. Parks, W. P. Pagano, M. Cheng-Mayer, C. Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol, 11: 1771-1775, 2001.
11. Cheng, H. C, C. Tao,Y.M. HTLV-1 Tax-associated hTid-1, a human DnaJ protein, is a repressor of IκB B kinase subunit. J Biol Chem, 277: 20605-20610,2002.
12. Lehman, C.-Y. E. a. I. R. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proc Natl Acad Sci U S A, 99: 1894–1898, 2002.
13. Trentin, G. A. Y., X. Tahir, S. Lhotak, S. Farhang-Fallah, J. Li, Y. Rozakis-Adcock, M. A mouse homologue of the Drosophila tumor suppressor l(2)tid gene defines a novel Ras GTPase-activating protein (RasGAP)-binding protein. J Biol Chem, 276: 13087-13095, 2001.
14. Sarkar, S. P., B. P. Lin, K. T. Kotenko, S. V. Cook, J. R. Lewis, A.Pestka, S. hTid-1, a human DnaJ protein, modulates the interferon signaling pathway. J Biol Chem, 276: 49034-49042, 2001.
15. Liu, H. Y. M., J. I. Hryciw, T. Li, C. Meakin, S. O. Human tumorous imaginal disc 1 (TID1) associates with Trk receptor tyrosine kinases and regulates neurite outgrowth in nnr5-TrkA cells. J Biol Chem, 280 : 19461-19471, 2005
16. Gudkov, A. V., A. R. Kazarov, S. A. Axenovich, and I. B. Roninson. Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and cell immortalization. Proc. Natl. Acad.Sci.USA, 91: 3744-3748, 1994.
17. Roninson, I. B. Gudkov, A. V. Genetic suppressor elements in the characterization and identification of tumor suppressor genes. Methods Mol. Biol, 222:413-436, 2003.
18. Tarunina, M. Alger, L. Chu, G. Munger, K. Gudkov, A. Functional genetic screen for genes involved in senescence: Role of Tid1, a homologue of the Drosophila tumor suppressor l(2)tid, in senescence and cell survival. Molecular and Cellular Biology, 24:10792-10801, 2004.
19. Landgraf, R. HER2 therapy. HER2 (ERBB2): functional diversity from structurally conserved building blocks. Breast Cancer Res, 9: 202, 2007.
20. Kim, S. W. C., T. H. Xiang, R. Lo, J. F. Campbell, M. J. Fearns, C. Lee, J. D. Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res, 64: 7732-7739, 2004.
21. Kim, S. W. H., M. Lo, J. F. Fearns, C. Xiang, R. Lazennec, G. Yang, Y. Lee, J. D. Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Res, 65: 8784-8791, 2005.
22. Trentin, G. A. H., Y. Wu, D. C. Tang, D. Rozakis-Adcock, M. Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Lett, 578: 323-330, 2004. 23. Edwards, K. M. M., K. Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene, 23: 8419-8431, 2004.
24. Canamasas, I. Debes, A. Natali, P. G. Kurzik-Dumke, U.
Understanding human cancer using Drosophila Tid47, a cytosolic product of the DnaJ-like tumor suppressor gene l(2)Tid, is a novel molecular partner of Patched related to skin cancer. J Biol Chem, 278: 30952-30960, 2003.
25. Hebrok, M. Pasca di Magliano, M. Hedgehog signalling in cancer formation and maintenance. Nature reviews: Cancer, 3: 903-911,2003.
26. Hooper, J. E. Scott, M.P. Communicating with Hedgehogs. Nature Rev:Molecular Cell Bilolgy, 307: 306-317, 2005.
27. Wakabayashi1,Y. Mao, J. H. Brown, K. Girardi, M. Balmain, A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature, 445:761-765
28. McMahon, B. J. Epidemiology and natural history of hepatitis B. Semin Liver Dis , 25 Suppl 1: 3-8, 2005.
29. Sohn,S. Y. Kim,S. B. Kim, J. Ahn. B. Y. Negative regulation of hepatitis B virus replication by cellular Hsp40/DnaJ proteins through destabilization of viral core and X proteins. Journal of General Virology, 87:1883–1891, 2006.
30. Nagy, A. Cre recombinase: The universal reagent for genome tailoring. Genesis, 26:99-109, 2000.
31. Sauer, B. Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proceedings of the National Academy of Sciences of the United States of America, 85:5166-5170, 1988.
32. Hayashi, S. McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: A tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol, 244: 305-318, 2002.
33. Copeland, N. G., Jenkins, N. A., and Court, D. L. Mouse genomictechnologies recombineering: A powerful new tool for muse functional genomics. Nat. Rev. Genet, 2:769-779, 2001.
34. Muyrer, J. P., Zhang, Y., and Stewart, A. F. Techniques:
Recombinogenic engineering-New options for cloning and
manipulating DNA. Trends Biochem. Sci, 26: 325-331, 2001.
35. Baudin, A. Ozier-Kalogeropoulos, O. Denouel, A. Lacroute, F. Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res, 21: 3329-3330, 1993.
36. Muyrer, J. P. Zhang, Y. Testa, G. Stewart, A. F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Research, 27:1555-1557, 1999.
37. Poteete, A. R. What makes the bacteriophage λ Red system useful for genetic engineering: Molecular mechanism and biological function. FEMS Microbiol. Lett, 201:9-14, 2001.
38. Lee, E. C.Yu, D. Martinez de Velasco, J. Tessarollo, L. Swing, D. A. Court, D. L. Jenkins, N. A. Copeland, N. G. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 73:56-65, 2001.
39. Liu, P. Jenkins, N. A. Copeland, N. G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Research, 13:476-484, 2003.
40. Wei-Chong Chang Chien. A study on the mouse rictor gene. Institute of Genome Sciences. National Yang-Ming Uninersity. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top