|
1. Schilling, B. D. M., T. Syken, J. Vidal, M. Munger, K. A novel human DnaJ protein, hTid-1, a homolog of the Drosophila tumor suppressor protein Tid56, can interact with the human papillomavirus type 16 E7 oncoprotein. Virology, 247: 74-85, 1998. 2. Kurzik-Dumke, U. G., D. Renthrop, M. Gateff, E. Tumor suppression in Drosophila is causally related to the function of the lethal(2) tumorous imaginal discs gene, a dnaJ homolog. Dev Genet, 16: 64-76, 1995. 3. Yin, X. R.-A., M. Genomic organization and expression of the human tumorous imaginal disc (TID1) gene. Gene, 278: 201-210, 2001. 4. Silver, P. A. Way, J. C. Eukaryotic DnaJ homologs and the specificity of Hsp70 activity. Cell, 74:5-6, 1993. 5. Laufen, T. Mayer, M.P. Beisel, C. Klostermeier, D. Mogk, A. Reinstein, J. Bukau, B.Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA, 96: 5452-5457, 1999. 6. Lo, J. F. H., M. Woo-Kim, S. Tian, B. Huang, J. F. Fearns, C. Takayama, S. Zapata, J. M. Yang, Y. Lee, J. D. Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2)tid, is critical for early embryonic development and cell survival. Mol Cell Biol, 24: 2226-3226, 2004. 7. Torregroza, I. Evans, T. Tid1 is a Smad-binding protein that can modulate Smad7 activity in developing embryos. Biochem J, 393: 311-320, 2006. 8. Hayashi, M. I.-Y., K. Yoshida, T. Wood, M. Fearns, C. Tatake, R. J. Lee, J. D. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med, 12: 128-132, 2006. 9. Syken, J. Macian, F. Agarwal, S. Rao, A. Munger, K. TID1, a mammalian homologue of the drosophila tumor suppressor lethal (2) tumorous imaginal discs, regulates activation - induced cell death in Th2 cells. Oncogene, 22:4636–4641, 2003. 10. Cheng, H. C., C. Shao, Z. Vidal, M. Parks, W. P. Pagano, M. Cheng-Mayer, C. Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol, 11: 1771-1775, 2001. 11. Cheng, H. C, C. Tao,Y.M. HTLV-1 Tax-associated hTid-1, a human DnaJ protein, is a repressor of IκB B kinase subunit. J Biol Chem, 277: 20605-20610,2002. 12. Lehman, C.-Y. E. a. I. R. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Proc Natl Acad Sci U S A, 99: 1894–1898, 2002. 13. Trentin, G. A. Y., X. Tahir, S. Lhotak, S. Farhang-Fallah, J. Li, Y. Rozakis-Adcock, M. A mouse homologue of the Drosophila tumor suppressor l(2)tid gene defines a novel Ras GTPase-activating protein (RasGAP)-binding protein. J Biol Chem, 276: 13087-13095, 2001. 14. Sarkar, S. P., B. P. Lin, K. T. Kotenko, S. V. Cook, J. R. Lewis, A.Pestka, S. hTid-1, a human DnaJ protein, modulates the interferon signaling pathway. J Biol Chem, 276: 49034-49042, 2001. 15. Liu, H. Y. M., J. I. Hryciw, T. Li, C. Meakin, S. O. Human tumorous imaginal disc 1 (TID1) associates with Trk receptor tyrosine kinases and regulates neurite outgrowth in nnr5-TrkA cells. J Biol Chem, 280 : 19461-19471, 2005 16. Gudkov, A. V., A. R. Kazarov, S. A. Axenovich, and I. B. Roninson. Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and cell immortalization. Proc. Natl. Acad.Sci.USA, 91: 3744-3748, 1994. 17. Roninson, I. B. Gudkov, A. V. Genetic suppressor elements in the characterization and identification of tumor suppressor genes. Methods Mol. Biol, 222:413-436, 2003. 18. Tarunina, M. Alger, L. Chu, G. Munger, K. Gudkov, A. Functional genetic screen for genes involved in senescence: Role of Tid1, a homologue of the Drosophila tumor suppressor l(2)tid, in senescence and cell survival. Molecular and Cellular Biology, 24:10792-10801, 2004. 19. Landgraf, R. HER2 therapy. HER2 (ERBB2): functional diversity from structurally conserved building blocks. Breast Cancer Res, 9: 202, 2007. 20. Kim, S. W. C., T. H. Xiang, R. Lo, J. F. Campbell, M. J. Fearns, C. Lee, J. D. Tid1, the human homologue of a Drosophila tumor suppressor, reduces the malignant activity of ErbB-2 in carcinoma cells. Cancer Res, 64: 7732-7739, 2004. 21. Kim, S. W. H., M. Lo, J. F. Fearns, C. Xiang, R. Lazennec, G. Yang, Y. Lee, J. D. Tid1 negatively regulates the migratory potential of cancer cells by inhibiting the production of interleukin-8. Cancer Res, 65: 8784-8791, 2005. 22. Trentin, G. A. H., Y. Wu, D. C. Tang, D. Rozakis-Adcock, M. Identification of a hTid-1 mutation which sensitizes gliomas to apoptosis. FEBS Lett, 578: 323-330, 2004. 23. Edwards, K. M. M., K. Depletion of physiological levels of the human TID1 protein renders cancer cell lines resistant to apoptosis mediated by multiple exogenous stimuli. Oncogene, 23: 8419-8431, 2004. 24. Canamasas, I. Debes, A. Natali, P. G. Kurzik-Dumke, U. Understanding human cancer using Drosophila Tid47, a cytosolic product of the DnaJ-like tumor suppressor gene l(2)Tid, is a novel molecular partner of Patched related to skin cancer. J Biol Chem, 278: 30952-30960, 2003. 25. Hebrok, M. Pasca di Magliano, M. Hedgehog signalling in cancer formation and maintenance. Nature reviews: Cancer, 3: 903-911,2003. 26. Hooper, J. E. Scott, M.P. Communicating with Hedgehogs. Nature Rev:Molecular Cell Bilolgy, 307: 306-317, 2005. 27. Wakabayashi1,Y. Mao, J. H. Brown, K. Girardi, M. Balmain, A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature, 445:761-765 28. McMahon, B. J. Epidemiology and natural history of hepatitis B. Semin Liver Dis , 25 Suppl 1: 3-8, 2005. 29. Sohn,S. Y. Kim,S. B. Kim, J. Ahn. B. Y. Negative regulation of hepatitis B virus replication by cellular Hsp40/DnaJ proteins through destabilization of viral core and X proteins. Journal of General Virology, 87:1883–1891, 2006. 30. Nagy, A. Cre recombinase: The universal reagent for genome tailoring. Genesis, 26:99-109, 2000. 31. Sauer, B. Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proceedings of the National Academy of Sciences of the United States of America, 85:5166-5170, 1988. 32. Hayashi, S. McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: A tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol, 244: 305-318, 2002. 33. Copeland, N. G., Jenkins, N. A., and Court, D. L. Mouse genomictechnologies recombineering: A powerful new tool for muse functional genomics. Nat. Rev. Genet, 2:769-779, 2001. 34. Muyrer, J. P., Zhang, Y., and Stewart, A. F. Techniques: Recombinogenic engineering-New options for cloning and manipulating DNA. Trends Biochem. Sci, 26: 325-331, 2001. 35. Baudin, A. Ozier-Kalogeropoulos, O. Denouel, A. Lacroute, F. Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res, 21: 3329-3330, 1993. 36. Muyrer, J. P. Zhang, Y. Testa, G. Stewart, A. F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Research, 27:1555-1557, 1999. 37. Poteete, A. R. What makes the bacteriophage λ Red system useful for genetic engineering: Molecular mechanism and biological function. FEMS Microbiol. Lett, 201:9-14, 2001. 38. Lee, E. C.Yu, D. Martinez de Velasco, J. Tessarollo, L. Swing, D. A. Court, D. L. Jenkins, N. A. Copeland, N. G. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 73:56-65, 2001. 39. Liu, P. Jenkins, N. A. Copeland, N. G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Research, 13:476-484, 2003. 40. Wei-Chong Chang Chien. A study on the mouse rictor gene. Institute of Genome Sciences. National Yang-Ming Uninersity. 2005.
|