跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 19:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴明福
研究生(外文):Ming-Fuw Lai
論文名稱:人體步態週期運動時雙足受力量測
論文名稱(外文):The Measurements of the Loading of Feet during Gait Cycle
指導教授:趙魯平趙魯平引用關係
指導教授(外文):Lu-Ping Chao
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:102
中文關鍵詞:力感測器步態週期電位計趾部跟部
外文關鍵詞:Force sensorGait cyclePotentiometerToeHeel
相關次數:
  • 被引用被引用:6
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人體靜態站立與步態週期運動時雙足受力狀態之研究,在探討人體下肢中各肢段負載大小與發展生物力學之研究上均扮演極具參考價值的角色。現今之人體步態週期運動分析之研究方式,乃於下肢中每肢段關結處膚貼反光標記,輔以電腦輔助之影像動作分析系統,以決定每一肢段於每一瞬間在空間中之運動位置,同時利用定置測力板收集地板作用於腳底的反力,結合運動學資料,計算出下肢各關節的淨作用力與力矩,以得出步態之動力學。但上述測試系統所需儀器及軟體龐大複雜,且在連續量測足底受力時有其拘限。
本研究乃藉由發展多分量力感測器及配合機械人學之原理,將人體足底之跟部(heel)與趾部(toe)間的蹠趾骨視為一自由度之旋轉關節,設計出十字型多分量力感測器四枚,分別置於人體雙足足底之前後部份,形成鞋型感測本體,進而實際量測步態運動足部受力大小。鞋型感測本體於測試步態週期時直接穿於受測者足部。為了計數步態週期時單腳大腿部位與小腿部位曲張角度,利用可變電阻原理所構成之電位計與連桿機構裝置於膝蓋部位。當進行雙足步態週期運動時,多分量力感測器所量測之各分量力與電位計量測的角度變化同步輸入資料擷取系統中,配合力感測器之校準數值,以進行分析整理而量測出人體雙足步態週期時完整足部受力之大小與方向。研究結果則可應用於雙足步行機器人之改進研發與製鞋工業開發新型鞋類所需。
The reacting loading of feet for a human in a neutral position and normal gait cycle are crucial in the force analysis of lower extremities and in the development of biomechanical research. Now a day, analyzing the gait motion, entails tracking the trajectories of the reflective markers which are attached on the skin, followed by making the imaginary motion process in computer aided analysis. Next, the kinematics of gait motion is determined for every segment and instant. On the other hand, the fixed-position force plates are used to register the reacting forces on the feet, thereby allowing the dynamics of the lower extremities to be obtained. Nevertheless, the technique used to employ reflective markers and fixed-position force plates may not measure the entire reaction loading for the feet in a gait cycle.
In this study, we design a shoe-shape sensor structure, capable of combining four multi-axis force sensors placed in the front part and rear part of feet. Also, the one of feet is treated as a one degree of freedom rotating articulation between the heel and the toe, the reacting loadings of feet to be directly measured and registered during gait motion. A shoe-shape structure is worn on feet of a tester. In addition, a potentiometer is set around the knee of the tester to register the flexion and extension angle between the thigh stick and shank stick during gait motion. More over, each component force measured from multi-component force sensors and corresponding angle measured from potentiometer are input into the data acquisition system with analysis and process to precisely measure the reacting loading with respect to their sizes and directions. Experimental results can be applied not only in clinical gait analysis of the osteopathy but also in the study of biped walking robots and shoes manufacturing for developing new shoe types.
第一章 緒論……………………………………………………………..1
1-1 研究動機………………………………………………………..1
1-2 文獻回顧………………………………………………………..5
1-3 研究目標和內容………………………………………………..7
第二章 理論基礎……………………………………………….……….8
2-1 有限元素法…………………...……………………….………..8
2-2-1 有限元素模型……………………………………..…….……8
2-2-2 賈氏座標轉換矩陣……………………………………...…..11
2-3 破壞理論………………………………………………………13
2-4 應力、應變與位移…………………………………………….15
2-4-1 應力與應變之關係………………………………………….15
2-4-2 應變與位移之關係………………………………………….17
2-5 電阻式應變計與惠斯登電橋………………………………....19
2-5-1 應變與阻抗之關係………………………...……………..…20
2-5-2 惠斯登電橋原理…………………………………………….21
2-6 多分量力感測器之偶合效應探討……………………………23
2-6-1 校準矩陣與交錯靈敏度係數…………………………….…23
2-6-2 條件係數…………………………………………………….24
2-7 電位計之原理與應用…………………………………………25
第三章 多分量力感測器最佳構形之模擬分析與測試…………...….26
3-1 感測器之設計考量……………………………………………28
3-2 多分量力感測器之位移與應變分析…………………………32
3-3 多分量力感測器之製作、測試與驗證………………………46
3-3-1 力感測器製作過程與測試………………………………….47
3-3-2 力感測器於有限元素模擬分析結果……………………….66
3-3-3 力感測器校準矩陣之差異探討…………………………….73
第四章 人體步態運動實驗…………………………………………....74
4-1 步態資料擷取系統……………………………………………74
4-2 人體步態實驗設備與方法……………………………………75
4-2-1 實驗設備………………………….…………………………75
4-2-2 實驗方法與過程…………………………………………….76
4-3 步態實驗結果…………………………………………………80
第五章 結論與未來展望……………...……………………………….92
5-1 結論……………………………………………………………92
5-2 未來展望………………………………………………………93
參考文獻………………………………………………….…………….94
1. 相子元, 黃泰源, 楊文賓, “下肢動作之運動學特性,” 鞋技通訊,
Febulary, 1998.
2. 相子元, 林逸錄, 楊文賓, “不同步態慢跑鞋足底壓力比較分析,”
鞋技通訊, August, 1998.
3. M. P. Kadaba, H. K. Ramakrishnan, and M. E. Wotten,
“Measuerment of Lower Extremity Kinematics during Level
Walking,” J. Orthop. Res., Vol. 8, pp. 383-392, 1990.
4. J. P. Holden, S. J. Stanhope, and J. A. Orsini, “Skeletal
Motion Estimates: Effect of Surface Target Techniques,” 2nd
World Congress of Biomechanics, July 10-15, 1994.
5. H. J. Woltring, “A Fortran Package for Generalized, Cross-
Validatory Spline Smoothing and Differentiation,” Adv. Eng.
Software, Vol. 8, pp. 104-113, 1986.
6. 林育志, “使用三種不同外部標記的下肢步態運動學和動力學之比
較,” 國立成功大學醫學工程研究所碩士論文, 1996.
7. 林昭宏, 周有禮, 朱銘祥, 宋雲通, “VICON系統在步態量測上的應用
與評估,” Kaohsiung J. Med. Sci., Vol.6, pp. 6-11, 1990.
8. 周有禮, 陳一宏, 張維軍, 周伯禧, “站立比、步頻和步角對人體步
行下肢所做功之影響,” 中華醫學工程學刊, 第14卷, 第2期, pp.
97-103, 1994.
9. O. E. Facey, I. D. Hannah, and D. Rosen, “Analysis of Low-
Pass Filtered Shoeprints and Pedobarograph Images,” Pattern
Recognition, Vol. 25, No. 6, pp. 647-654, 1992.
10. L. A. Livingstone, J. M. Stevenson, and S. J. Olney,
“Stairclimbing Kinematics on Stairs of Differing
Dimensions,” Arch. Phys. Med. Rehabil., Vol. 72, pp. 398-
402, 1991.
11. B. R. Lunsford and J. Perry, “The Standing Heel-Rise Test
for Ankle Plantar Flexion: Criterion for Normal,” Physical
Therapy, Vol. 75, No. 8, 1995.
12. B. J. de Lateur, R. M. Giaconi, K. Questad, M. Ko, and J.
F. Lehmann, “Footwear and Posture: Compensatory Strategies
for Heel Height,” Amer. J. Phys. Med. & Rehabil. Vol. 70,
No. 5, pp. 246-254, 1991.
13. H. Zhu, J. J. Wertsch, G. F. Harris, and H. M. Alba,
“Walking Cadence Effect on Plantar Pressures,” Arch. Phys.
Med. Rehabil., Vol. 76, pp. 1000-1005, 1995.
14. S. H. Scott and D. A. Winter, “Talocrural and
Talocalcaneal Joint Kinematics and Kinetics during the
Stance Phase of Walking,” J. Biomechanics, Vol. 24, No. 8,
pp. 743-752, 1991.
15. M. A. Lafortune, P. R. Cavanagh, H. J. Sommer III, and A.
Kalenak, “Three-Dimensional Kinematics of the Human Knee
during Walking,” J. Biomechanics, Vol. 25, No. 4, pp.347-
357, 1992.
16. W. A. Rossi, “Podometrics: A New Methodology for Foot
Typing,” Journal of Testing and Evaluation, Vol. 20, No.
4, pp. 301-311, 1994.
17. J. A. Duncan, D. L. Kowalk, and C. L. Vaughan, “Six Degree
of Freedom Joint Power in Stair Climbing,” Gait & Posture,
Vol. 5, pp.204-210, 1997.
18. H. V. Brussel, I. H. Belien, and I. H. Thielemans, “Force
Sensing for Advanced Robot Control,” Robotics, Vol. 2,
pp.139-148, 1986.
19. M. Hirofumi and I. Shimoyama, “Dynamic Walk of a Biped,”
The International Journal of Robotics Research, Vol. 3,
No.2, pp. 60-74, 1984.
20. W. L. Jin and C. D. Mote, “A Six-Component Silicon Micro
Force Sensor,” Sensor and Actuators A, Vol. 65, pp. 109-
115, 1998.
21. R. D. Cook, D. S. Malkus, and M. E. Plesha, “Concepts and
Applications of Finite Element Analysis,” John Wiley &
Sons, Inc. 1989.
22. J. E. Shigley and C. R. Mischke, “Mechanical Engineering
Design,” McGraw-Hill, Inc., 1989.
23. J. R. Barber, “Elasticity,” Kluwer Academic Publishers,
1992.
24. J. W. Dally and W. F. Riley, “Experimental Stress
Analysis,” McGraw-Hill, Inc., 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top