跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯尹良
研究生(外文):Yin-liang Tang
論文名稱:腸病毒71型VP1和VP2蛋白之研究
論文名稱(外文):The Study of VP1 and VP2 of Enterovirus 71
指導教授:王貞仁王貞仁引用關係劉清泉劉清泉引用關係
指導教授(外文):Jen-Ren WangChing-Chuan Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:腸病毒71型外殼蛋白
外文關鍵詞:Enterovirus 71capsid protein
相關次數:
  • 被引用被引用:1
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
  腸病毒71型是屬於小RNA病毒科的一員,其基因組為一條大小約7.5 kb的正單股RNA,這條RNA被包裹在由VP1到VP4四個蛋白所構成的病毒外殼中,本身沒有外套膜。腸病毒71型大多感染五歲以下的幼童,所造成的症狀涵蓋了輕微的手足口症、咽峽炎,到嚴重的無菌性腦膜炎、腦幹腦炎、急性無力麻痺、小腦性運動失調,甚至是神經性肺水腫。腸病毒71型也在一九九八年在台灣造成大流行,有近十三萬的孩童受到感染,其中有405例為重症患者,最後造成78名孩童的死亡。
 
  由於腸病毒71型會造成許多神經方面的併發症,所以本研究的目的在於探討腸病毒71型外殼蛋白 (VP1和VP2) 是否具有神經毒性以及其他生物特性。首先利用桿狀病毒表現系統,以攜帶有VP1或VP2基因的重組桿狀病毒感染昆蟲細胞 (Spodoptera frugiperda; Sf-9),再利用鎳離子親合性管柱純化。實驗結果顯示:VP1蛋白在桿狀病毒表現系統中表現量並不高,而VP2蛋白則是約有70 % 都是inclusion body,爲了獲得較大量的目標蛋白,在實驗中將蛋白表現的平台轉換到大腸桿菌表現系統。在此系統中,以pET系統中的pET21b作為表現載體,另外選了三個不同的菌株作為表現宿主,分別是:BL21(DE3)pLysS strain、BL21-CodonPlus(DE3)-RP strain、BL21-CodonPlus(DE3)-RIL strain來作為表現的宿主。由實驗結果得知,目標蛋白在BL21-CodonPlus(DE3)-RIL中有較高的表現量。在大腸桿菌表現系統中,VP1以可溶性蛋白的方式存在,而VP2仍舊是不可溶蛋白的形式。在表現系統得到大量的蛋白之後,利用鎳離子親合性管柱加以純化,所得到的目標蛋白進行神經毒性測試、趨化性測試以及侵入性測試。在神經毒性測試方面,以不同濃度 (1 µM、3 µM、5 µM) 的目標蛋白 (VP1和VP2) 刺激兩種不同的神經細胞株 (SK-N-SH和SH-SY5Y) 來測試目標蛋白是否具有毒性,實驗結果顯示:這些目標蛋白不論是刺激SK-N-SH或SH-SY5Y,均不會造成神經細胞的死亡。在趨化性測試方面,以不同濃度 (1 µM、3 µM、5 µM) 的目標蛋白 (VP1和VP2) 吸引U937細胞,VP1蛋白可以誘導U937細胞產生趨化性行為,而且不論U937細胞是否有先被VP1處理過,均會隨下方VP1之濃度上升而增加穿透至下方之現象。反之,VP2雖然也能誘導U937細胞產生趨化性行為,但是並沒有隨濃度增加而上升的現象。最後在侵入性測試方面,同樣以不同濃度 (1 µM、3 µM、5 µM) 的VP1或是VP2吸引單核球細胞,結果顯示:無論是VP1或是VP2,均無法明顯誘導單核球細胞產生侵入性行為。由本研究的結果可知:腸病毒71型的外殼蛋白 (VP1和VP2) 雖然對神經母細胞瘤細胞株不會產生神經毒性,也不會造成細胞株的死亡。然而這些外殼蛋白卻可以誘導單核球細胞產生趨化性行為,但卻抑制了侵入性行為的發生。
 Enterovirus 71 (EV71) belongs to Picornaviridae family, its genome is a single-stranded, positive-polarity RNA, approximately 7.5 kb in size. The RNA genome was surrounded by a nonenveloped capsid, which consisted of VP1 to VP4. Infection of EV71 can cause various clinical manifestations, including: hand-foot-and-mouth disease, herpangina, aseptic meningitis, brainstem encephalitis, acute flaccid paralysis, cerebellar ataxia, and pulmonary edema. EV71 caused an outbreak in Taiwan in 1998, nearly 130,000 children were infected, 405 were combined with severe neurological complications, 78 died.

 Because EV71 infection can cause diverse symptoms of CNS, the specific aim of this study is to explore the role of capsid protein (VP1 and VP2) in EV71 infections. At first, baculovirus expression system was used. Recombinant baculovirus which carried the VP1 or VP2 gene infected the Spodoptera frugiperda (Sf-9) cells, then VP1 or VP2 protein was purified via the nickel affinity chromatography. The results showed that VP1 protein could not be expressed in high level, and VP2 protein was expressed in the form of inclusion body. To obtain adequate target proteins, Escherichia coli (E. coli) expression system was used instead. In this system, VP1 or VP2 gene was cloned into pET21b vector, and three different host strains, BL21(DE3)pLysS, BL21-CodonPlus(DE3)-RP, BL21-CodonPlus(DE3)-RIL were analyzed for the VP1 or VP2 expression. The highest expression level was obtained in BL21-CodonPlus(DE3)-RIL strain. The expressed proteins were purified by nickel affinity chromatography and then analyzed their biological properties. In neurotoxicity assay, two neuroblastoma cell lines, SK-N-SH and SH-SY5Y, were pretreated with different doses (1 µM、3 µM、5 µM) of VP1 or VP2 proteins. The results showed that VP1 or VP2 protein can not cause the death of neuroblastoma cell lines. In chemotaxis assay, VP1 can promote chemotaxis behavior of U937 cells in a dose-dependent manner no matter whether U937 cells were pretreated with VP1 or not. On the other hand, VP2 can also promote the chemotaxis behavior, however, dose-dependent manner was not observed. In invasion assay, neither VP1 nor VP2 protein can induce the invasive behavior of peripheral blood monocytes. In conclusion, the capsid proteins (VP1 and VP2) of EV71 did not show neurotoxicity on neuroblastoma cell lines, but they could induce the chemotaxis behavior and inhibit invasive behavior of monocytes.
目錄
中文摘要...................................................................i
英文摘要.................................................................iii
誌謝.......................................................................v
目錄......................................................................vi
圖目錄....................................................................ix
緒論.......................................................................1
腸病毒71型簡史.............................................................1
腸病毒71型的病毒學.........................................................2
腸病毒71型的致病機轉.......................................................4
腸病毒外殼蛋白 (capsid protein) 的研究.....................................6
其他病毒外殼蛋白的研究.....................................................7
神經毒性 (neurotoxicity) 的研究............................................7
趨化作用 (chemotaxis) 的研究..............................................10
侵入性 (invasion) 的研究..................................................13
表現系統的建立............................................................14
研究動機..................................................................16
材料與方法................................................................17
細胞培養、解凍與保存....................................................17
腸病毒71型的培養..........................................................18
萃取病毒的核醣核酸 (ribonucleic acid;RNA)................................18
RT-PCR....................................................................18
洋菜膠電泳................................................................19
DNA片段之回收.............................................................19
限制酶切割處理與純化......................................................19
載體 (vector) 的CIP處理與純化.............................................20
接合反應 (ligation).......................................................20
轉型 (Transformation).....................................................20
目標基因的核酸定序 (sequencing)...........................................21
轉染 (transfection).......................................................21
溶菌斑測試 (plaque assay).................................................22
重組桿狀病毒的小規模量化..................................................22
重組病毒的量化與鑑定......................................................23
重組病毒的鑑定 (基因層面-PCR).............................................24
SDS-PAGE..................................................................25
重組病毒的鑑定 (蛋白質層面-Western blot)..................................25
重組病毒的大規模量化與病毒濃度測定........................................26
以桿狀病毒表現系統表現蛋白................................................26
以大腸桿菌表現系統表現蛋白................................................26
親合性管柱層析............................................................27
神經毒性測試 (Neurotoxicity assay)........................................27
XTT assay.................................................................28
趨化性試驗 (chemotaxis assay).............................................28
侵入性試驗 (Invasion assay)...............................................29
Peripheral blood mononuclear cell (PBMC)分離法............................30
Red blood cell (RBC) lysis buffer.........................................31
結果......................................................................32
VP1和VP2的質體構築、表現與純化..........................................32
桿狀病毒表現系統中目標蛋白 (VP1和VP2) 的表現............................33
大腸桿菌表現系統中目標蛋白 (VP1和VP2) 的表現..............................34
目標蛋白的大量表現和純化..................................................34
神經毒性測試..............................................................35
趨化性 (chemotaxis) 試驗..................................................36
侵入性 (invasion assay) 試驗..............................................37
討論......................................................................38
目標蛋白在不同表現系統中的比較..........................................38
本實驗與文獻中對病毒外殼蛋白的探討之比較................................40
神經毒性測試與實驗模式....................................................41
趨化性和侵入性試驗的探討................................................43
結語....................................................................45
參考文獻..................................................................46
附錄......................................................................87
Appendix 1. 儀器........................................................87
Appendix 2. 藥品及試劑 (組).............................................90
Appendix 3. Media and Broths............................................93
Appendix 4. primers.....................................................98
Appendix 5. Restriction map of pBlueBac4.5/V5-His.......................99
Appendix 6. Restriction map of pET-21b (+).............................100
自述.....................................................................101
參考文獻
1.McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. In: FEMS Microbiol Rev; 2002:91-107.
2.Li ML, Hsu TA, Chen TC, et al. The 3C protease activity of enterovirus 71 induces human neural cell apoptosis. Virology 2002;293(2):386-95.
3.Paulous S, Malnou CE, Michel YM, Kean KM, Borman AM. Comparison of the capacity of different viral internal ribosome entry segments to direct translation initiation in poly(A)-dependent reticulocyte lysates. Nucleic Acids Res 2003;31(2):722-33.
4.del Angel RM, Papavassiliou AG, Fernandez-Tomas C, Silverstein SJ, Racaniello VR. Cell proteins bind to multiple sites within the 5' untranslated region of poliovirus RNA. Proc Natl Acad Sci U S A 1989;86(21):8299-303.
5.Borman AM, Le Mercier P, Girard M, Kean KM. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 1997;25(5):925-32.
6.Yalamanchili P, Banerjee R, Dasgupta A. Poliovirus-encoded protease 2APro cleaves the TATA-binding protein but does not inhibit host cell RNA polymerase II transcription in vitro. J Virol 1997;71(9):6881-6.
7.Thompson SR, Sarnow P. Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. Virology 2003;315(1):259-66.
8.Murray KE, Barton DJ. Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. J Virol 2003;77(8):4739-50.
9.Nagata N, Shimizu H, Ami Y, et al. Pyramidal and extrapyramidal involvement in experimental infection of cynomolgus monkeys with enterovirus 71. J Med Virol 2002;67(2):207-16.
10.Nagata N, Iwasaki T, Ami Y, et al. Differential localization of neurons susceptible to enterovirus 71 and poliovirus type 1 in the central nervous system of cynomolgus monkeys after intravenous inoculation. J Gen Virol 2004;85(Pt 10):2981-9.
11.Brown BA, Oberste MS, Alexander JP, Jr., Kennett ML, Pallansch MA. Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol 1999;73(12):9969-75.
12.Lin TY, Chang LY, Huang YC, Hsu KH, Chiu CH, Yang KD. Different proinflammatory reactions in fatal and non-fatal enterovirus 71 infections: implications for early recognition and therapy. Acta Paediatr 2002;91(6):632-5.
13.Yang KD, Yang MY, Li CC, et al. Altered cellular but not humoral reactions in children with complicated enterovirus 71 infections in Taiwan. J Infect Dis 2001;183(6):850-6.
14.Wang SM, Lei HY, Huang KJ, et al. Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis 2003;188(4):564-70.
15.Wang SM, Lei HY, Huang MC, et al. Therapeutic efficacy of milrinone in the management of enterovirus 71-induced pulmonary edema. Pediatr Pulmonol 2005;39(3):219-23.
16.Shih SR, Stollar V, Lin JY, Chang SC, Chen GW, Li ML. Identification of genes involved in the host response to enterovirus 71 infection. J Neurovirol 2004;10(5):293-304.
17.Oberste MS, Penaranda S, Maher K, Pallansch MA. Complete genome sequences of all members of the species Human enterovirus A. J Gen Virol 2004;85(Pt 6):1597-607.
18.Ranganathan S, Singh S, Poh CL, Chow VT. The hand, foot and mouth disease virus capsid: sequence analysis and prediction of antigenic sites from homology modelling. Appl Bioinformatics 2002;1(1):43-52.
19.Jee YM, Cheon DS, Kim K, et al. Genetic analysis of the VP1 region of human enterovirus 71 strains isolated in Korea during 2000. Arch Virol 2003;148(9):1735-46.
20.Wang JR, Tuan YC, Tsai HP, Yan JJ, Liu CC, Su IJ. Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. J Clin Microbiol 2002;40(1):10-5.
21.Singh S, Chow VT, Chan KP, Ling AE, Poh CL. RT-PCR, nucleotide, amino acid and phylogenetic analyses of enterovirus type 71 strains from Asia. J Virol Methods 2000;88(2):193-204.
22.Shih SR, Ho MS, Lin KH, et al. Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Res 2000;68(2):127-36.
23.Hu YC, Hsu JT, Huang JH, Ho MS, Ho YC. Formation of enterovirus-like particle aggregates by recombinant baculoviruses co-expressing P1 and 3CD in insect cells. Biotechnol Lett 2003;25(12):919-25.
24.Baumert TF, Ito S, Wong DT, Liang TJ. Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 1998;72(5):3827-36.
25.Baumert TF, Vergalla J, Satoi J, et al. Hepatitis C virus-like particles synthesized in insect cells as a potential vaccine candidate. Gastroenterology 1999;117(6):1397-407.
26.Triyatni M, Saunier B, Maruvada P, et al. Interaction of hepatitis C virus-like particles and cells: a model system for studying viral binding and entry. J Virol 2002;76(18):9335-44.
27.Kim JY, Jeon ES, Lim BK, et al. Immunogenicity of a DNA vaccine for coxsackievirus B3 in mice: protective effects of capsid proteins against viral challenge. Vaccine 2005;23(14):1672-9.
28.Song H, Fang W, Wang Z, et al. Detection of foot-and-mouth virus antibodies using a purified protein from the high-level expression of codon-optimized, foot-and-mouth disease virus complex epitopes in Escherichia coli. Biotechnol Lett 2004;26(16):1277-81.
29.Wang JH, Liang CM, Peng JM, et al. Induction of immunity in swine by purified recombinant VP1 of foot-and-mouth disease virus. Vaccine 2003;21(25-26):3721-9.
30.Peng JM, Liang SM, Liang CM. VP1 of foot-and-mouth disease virus induces apoptosis via the Akt signaling pathway. J Biol Chem 2004;279(50):52168-74.
31.Berois M, Sapin C, Erk I, Poncet D, Cohen J. Rotavirus nonstructural protein NSP5 interacts with major core protein VP2. J Virol 2003;77(3):1757-63.
32.Chen MH, Icenogle JP. Rubella virus capsid protein modulates viral genome replication and virus infectivity. J Virol 2004;78(8):4314-22.
33.Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 1994;367(6459):188-93.
34.Wiley CA, Masliah E, Morey M, et al. Neocortical damage during HIV infection. Ann Neurol 1991;29(6):651-7.
35.Ketzler S, Weis S, Haug H, Budka H. Loss of neurons in the frontal cortex in AIDS brains. Acta Neuropathol (Berl) 1990;80(1):92-4.
36.Gray F, Haug H, Chimelli L, et al. Prominent cortical atrophy with neuronal loss as correlate of human immunodeficiency virus encephalopathy. Acta Neuropathol (Berl) 1991;82(3):229-33.
37.Magnuson DS, Knudsen BE, Geiger JD, Brownstone RM, Nath A. Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol 1995;37(3):373-80.
38.Savio T, Levi G. Neurotoxicity of HIV coat protein gp120, NMDA receptors, and protein kinase C: a study with rat cerebellar granule cell cultures. J Neurosci Res 1993;34(3):265-72.
39.Lipton SA. Human immunodeficiency virus-infected macrophages, gp120, and N-methyl-D-aspartate receptor-mediated neurotoxicity. Ann Neurol 1993;33(2):227-8.
40.Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988;1(8):623-34.
41.Meldrum BS. Update on the mechanism of action of antiepileptic drugs. Epilepsia 1996;37 Suppl 6:S4-11.
42.Yaksh TL, Chaplan SR, Malmberg AB. Future directions in the pharmacological management of hyperalgesic and allodynic pain states: the NMDA receptor. NIDA Res Monogr 1995;147:84-103.
43.Dreyer EB, Kaiser PK, Offermann JT, Lipton SA. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 1990;248(4953):364-7.
44.Dawson VL, Dawson TM, Uhl GR, Snyder SH. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc Natl Acad Sci U S A 1993;90(8):3256-9.
45.Heyes MP, Saito K, Markey SP. Human macrophages convert L-tryptophan into the neurotoxin quinolinic acid. Biochem J 1992;283 ( Pt 3):633-5.
46.Heyes MP, Brew BJ, Martin A, et al. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann Neurol 1991;29(2):202-9.
47.Tsiang H, Ceccaldi PE, Ermine A, Lockhart B, Guillemer S. Inhibition of rabies virus infection in cultured rat cortical neurons by an N-methyl-D-aspartate noncompetitive antagonist, MK-801. Antimicrob Agents Chemother 1991;35(3):572-4.
48.Yu N, Billaud JN, Phillips TR. Effects of feline immunodeficiency virus on astrocyte glutamate uptake: implications for lentivirus-induced central nervous system diseases. Proc Natl Acad Sci U S A 1998;95(5):2624-9.
49.Lipkin WI, Carbone KM, Wilson MC, Duchala CS, Narayan O, Oldstone MB. Neurotransmitter abnormalities in Borna disease. Brain Res 1988;475(2):366-70.
50.Gelman BB, Wolf DA, Rodriguez-Wolf M, West AB, Haque AK, Cloyd M. Mononuclear phagocyte hydrolytic enzyme activity associated with cerebral HIV-1 infection. Am J Pathol 1997;151(5):1437-46.
51.Dhib-Jalbut S, Hoffman PM, Yamabe T, et al. Extracellular human T-cell lymphotropic virus type I Tax protein induces cytokine production in adult human microglial cells. Ann Neurol 1994;36(5):787-90.
52.Prehn JH, Backhauss C, Krieglstein J. Transforming growth factor-beta 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 1993;13(3):521-5.
53.Prehn JH, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC, Miller RJ. Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons. Proc Natl Acad Sci U S A 1994;91(26):12599-603.
54.Prehn JH, Bindokas VP, Jordan J, et al. Protective effect of transforming growth factor-beta 1 on beta-amyloid neurotoxicity in rat hippocampal neurons. Mol Pharmacol 1996;49(2):319-28.
55.Meucci O, Miller RJ. gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci 1996;16(13):4080-8.
56.Christopherson K, 2nd, Hromas R. Chemokine regulation of normal and pathologic immune responses. Stem Cells 2001;19(5):388-96.
57.Fernandis AZ, Cherla RP, Chernock RD, Ganju RK. CXCR4/CCR5 down-modulation and chemotaxis are regulated by the proteasome pathway. J Biol Chem 2002;277(20):18111-7.
58.Mackay CR. Chemokines: immunology's high impact factors. Nat Immunol 2001;2(2):95-101.
59.De Groot CJ, Woodroofe MN. The role of chemokines and chemokine receptors in CNS inflammation. Prog Brain Res 2001;132:533-44.
60.Broxmeyer HE. Regulation of hematopoiesis by chemokine family members. Int J Hematol 2001;74(1):9-17.
61.Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001;2(2):123-8.
62.Horuk R. Chemokine receptors. Cytokine Growth Factor Rev 2001;12(4):313-35.
63.Ansel KM, Cyster JG. Chemokines in lymphopoiesis and lymphoid organ development. Curr Opin Immunol 2001;13(2):172-9.
64.Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410(6824):50-6.
65.Kuijpers TW, Harlan JM. Monocyte-endothelial interactions: insights and questions. J Lab Clin Med 1993;122(6):641-51.
66.Alderson LM, Endemann G, Lindsey S, Pronczuk A, Hoover RL, Hayes KC. LDL enhances monocyte adhesion to endothelial cells in vitro. Am J Pathol 1986;123(2):334-42.
67.Endemann G, Pronzcuk A, Friedman G, Lindsey S, Alderson L, Hayes KC. Monocyte adherence to endothelial cells in vitro is increased by beta-VLDL. Am J Pathol 1987;126(1):1-6.
68.Territo MC, Berliner JA, Almada L, Ramirez R, Fogelman AM. Beta-very low density lipoprotein pretreatment of endothelial monolayers increases monocyte adhesion. Arteriosclerosis 1989;9(6):824-8.
69.Quinn MT, Parthasarathy S, Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 1988;85(8):2805-9.
70.Rovid AH, Roth JA. Enhancement of monocyte migration and phagocytosis by the bovine immunodeficiency-like virus Gag proteins. J Acquir Immune Defic Syndr Hum Retrovirol 1997;14(1):18-25.
71.Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S. HIV-1-Tat protein promotes chemotaxis and invasive behavior by monocytes. J Immunol 1996;157(3):974-7.
72.Ensoli B, Buonaguro L, Barillari G, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 1993;67(1):277-87.
73.Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988;55(6):1189-93.
74.Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 1994;91(2):664-8.
75.Roy S, Katze MG, Parkin NT, Edery I, Hovanessian AG, Sonenberg N. Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1 tat gene product. Science 1990;247(4947):1216-9.
76.Flores SC, Marecki JC, Harper KP, Bose SK, Nelson SK, McCord JM. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci U S A 1993;90(16):7632-6.
77.Howcroft TK, Strebel K, Martin MA, Singer DS. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 1993;260(5112):1320-2.
78.Viscidi RP, Mayur K, Lederman HM, Frankel AD. Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science 1989;246(4937):1606-8.
79.Barillari G, Gendelman R, Gallo RC, Ensoli B. The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci U S A 1993;90(17):7941-5.
80.Vogel BE, Lee SJ, Hildebrand A, et al. A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J Cell Biol 1993;121(2):461-8.
81.Kolson DL, Buchhalter J, Collman R, et al. HIV-1 Tat alters normal organization of neurons and astrocytes in primary rodent brain cell cultures: RGD sequence dependence. AIDS Res Hum Retroviruses 1993;9(7):677-85.
82.Shaw SK, Ma S, Kim MB, et al. Coordinated redistribution of leukocyte LFA-1 and endothelial cell ICAM-1 accompany neutrophil transmigration. J Exp Med 2004;200(12):1571-80.
83.Dhawan S, Weeks BS, Soderland C, et al. HIV-1 infection alters monocyte interactions with human microvascular endothelial cells. J Immunol 1995;154(1):422-32.
84.Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991;64(2):327-36.
85.Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2(3):161-74.
86.Doan LX, Li M, Chen C, Yao Q. Virus-like particles as HIV-1 vaccines. Rev Med Virol 2005;15(2):75-88.
87.Lombet A, Zujovic V, Kandouz M, et al. Resistance to induced apoptosis in the human neuroblastoma cell line SK-N-SH in relation to neuronal differentiation. Role of Bcl-2 protein family. Eur J Biochem 2001;268(5):1352-62.
88.Pizzi M, Boroni F, Bianchetti A, et al. Expression of functional NR1/NR2B-type NMDA receptors in neuronally differentiated SK-N-SH human cell line. Eur J Neurosci 2002;16(12):2342-50.
89.Brown AM, Riddoch FC, Robson A, Redfern CP, Cheek TR. Mechanistic and functional changes in Ca2+ entry after retinoic acid-induced differentiation of neuroblastoma cells. Biochem J 2005;388(Pt 3):941-8.
石宗憲 1998. Expression and characterization of the human
thrombomodulin. 國立成功大學生物化學研究所碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝清俊,1995,<公共資訊的流通與所有權--欣見行政機關推動電子資料流通有感>,《研考雙月刊》,1995年6月,頁28-35。
2. 林明昕,2004<原住民地位之保障作為「基本權利」或「基本國策」?>,《憲政時代》,2004年29卷第3期,台北:憲政時代編輯委員會。
3. 曾淑芬,2002c,<社會公平與數位落差>,《研考雙月刊》,2002年2月,台北:行政院研究發展考核委員會。
4. 曾淑芬,2002b,<數位落差>,《資訊社會研究》,2002年1月,嘉義:南華大學社會學研究所。
5. 彭慧鸞,2001,<電信自由化建制與數位落差的政治經濟分析>,《問題與研究雙月刊》,2001年7月,頁25-40。台北:國立政治大學國際關係研究中心。
6. 彭心儀,2002,<由資訊通信法制之發展趨勢論數位落差之消弭>,《經社法制論叢》,2002年1月,頁259-299。台北:政行院經濟建設委員會健全經社法規工作小組。
7. 陳清河、田孟蓉,2002,<建構另類網際網路遠距教學模式的迷思>,《圖文傳播學報》,2002年11月,台北:台灣師範大學圖文傳播學系。
8. 許清琦、曾淑芬、劉靜怡、吳鴻煦,2003,<公元二○一○年台灣網路化社會之發展策略>,《國家政策季刊》,2003年3月,台北:行政院研究發展考核委員會。
9. 紀國鐘,2003,<普及政府服務、縮短數位落差>,《研考雙月刊》,2003年2月,台北:行政院研究發展考核委員會。
10. 邱魏頌正、陳嘉駿,2004,<數位落差現象再探討--多國比較分析>,《傳播與管理研究》,2004年1月,嘉義:南華大學傳播管理學研究所。
11. 林嘉誠,2002,<政府資訊建設與公義社會>,《研考雙月刊》,2002年2月,台北:行政院研究發展考核委員會。
12. 林逢慶,2003,<消弭數位落差--政府的責任與對策>,《國家政策季刊》,2003年3月,台北:行政院研究發展考核委員會。