跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳良德
研究生(外文):Liang-De Chen
論文名稱:台灣北部海域大氣乾沉降中水溶性無機與有機氮之研究
論文名稱(外文):The dry deposition of water-soluble inorganic and organic nitrogen species in the coastal atmosphere of northern Taiwann
指導教授:陳宏瑜陳宏瑜引用關係
指導教授(外文):Hung-Yu Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋環境資訊學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:133
中文關鍵詞:乾沉降氮物種
外文關鍵詞:dry depositionnitrogen
相關次數:
  • 被引用被引用:20
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
  本研究於國立海洋大學工學二館(北緯25度9分,東經121度46分)樓頂,離地面約20公尺,架設高流量採樣器(TE-5170, Tish Environmental, INC.),採樣流量為0.8m3min-1;以收集大氣懸浮微粒﹔單一樣本之採集時間為24小時,本研究所用之採集樣本時期為:2004年7月至2005年12月,計18個月共303個樣本。
所採集之氣膠樣本,主要以分光光度法對其進行其所含水溶性無機氮物種(dissolved inorganic nitrogen, DIN)與水溶性有機氮物種(dissolved organic nitrogen, DON)之濃度分析。水溶性無機氮物種可分為:銨鹽(NH4+)、亞硝酸鹽(NO2-)與硝酸鹽(NO3-),其中銨鹽之濃度測量方法為indophenol blue spectrophotometric method,亞硝酸濃度之測量方法為pink azo dye spectrophotometric method;硝酸之測量方法為將樣水通過鎘銅還原管使硝酸還原成亞硝酸並藉由自動流動式注入系統(flow injector analyzer, FIA),使測量硝酸流程自動化;水溶性有機氮物種之量測方法則是將樣本先適當稀釋後添加PO氧化劑再以UV照射24小時使樣本中的有機氮氧化成無機氮,之後所測得的濃度即為水溶性總無機氮濃度(total dissolved inorganic nitrogen, TDN)。即樣本中水溶性有機氮物種濃度為:水溶性總無機氮濃度減去水溶性無機氮濃度(DON=TDN-DIN)。
所採集的大氣懸浮微粒樣本中所含的平均銨鹽濃度為92 58nmol/m3,佔水溶性無機氮的比例為4%~45%;且其受季節性氣候變化風向改變的影響,導致氣膠之來源不同使其濃度有所變化﹔平均亞硝酸鹽濃度為1 0.3nmol/m3,因屬於過渡性元素於水溶性無機氮濃度所佔比例並不十分顯著,為0%~7%;平均硝酸鹽濃度為136 45nmol/m3,佔水溶性無機氮的比例為54%~92%,且其受季節性氣候變化風向改變的影響。
大氣懸浮微粒樣本中所含之水溶性無機氮平均濃度為:230 99 nmol/m3,佔總水溶性氮物種之比例為:74%~98%;水溶性有機氮濃度為:15 6 nmol/m3,佔總水溶性氮物種之比例為:2%~26%。大氣懸浮微粒樣本中所含之水溶性無機氮濃度與水溶性有機氮濃度會因為氣候變化而隨之有濃度高低起伏之變化情形產生﹔如當東北季風盛行時,大氣懸浮微粒樣本中就會有較高的水溶性無機氮濃度產生,2005年11、12月份之水溶性無機氮濃度則高達347與300 nmol/m3;2005年7、8月則是受到區域性人為影響,大氣懸浮微粒樣本中的水溶性無機氮濃度亦高達359與280 nmol/m3。其水溶性有機氮濃度,受到春季花粉作用的影響於2005年3月有濃度高值,其濃度為24 nmol/m3。
大氣懸浮微粒樣本中之氮物種粒徑分佈情形為:銨鹽主要濃度分佈於細顆粒中,其平均粒徑為0.53±0.05μm;硝酸鹽主要濃度分佈於粗顆粒中,其平均粒徑為2.5±1.0μm;水溶性有機氮主要濃度分佈於細顆粒中,其平均粒徑為1.2±0.8μm。
大氣懸浮微粒樣本中之氮物種通量分佈情形為:銨鹽之平均通量為340±233μmol m-2 mon-1;亞硝酸鹽之平均通量為7.35±8.12μmol m-2 mon-1;硝酸鹽之平均通量為1469±760μmol m-2 mon-1;水溶性有機氮之平均通量為115±130μmol m-2 mon-1; 由於硝酸鹽主要濃度粒徑分佈為粗顆粒,且其於氮物種濃度中所佔比例較多,因此氮物種通量主要以硝酸鹽通量貢獻度最大。
In this study, the particulate nitrogen species including total dissolved nitrogen (TDN), total dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) were measured in both total suspended particles and size-fractionated particles using high volume sampling techniques through the period from June 2004 to December 2005. The sampling site was located on the roof of a building at the National Taiwan Ocean University (25.09’ N; 121.46’ E) close to the East China Sea.
TDN and TIN contents were analyzed separately and the difference between them used to calculate the DON content. The sum of ammonium (NH4+), nitrite (NO2-) and nitrate (NO3-) was assumed to be the DIN. The overall mean concentrations of total suspended particles were 92±58, 1±0.3 and 136±45 nmol m-3 for ammonium, nitrite and nitrate, respectively. Among these three nitrogen species, NO2- has been classified as the transitional product in the nitrogen cycle series, therefore, its percentage concentration (0 ~ 7 %) is too small to be ignored. Overall, DIN (230±99 nmol m-3) show a very strong continental and/or anthropogenic source dependent variations which were derived from the mainland China and local effect during the periods of winter and summer, respectively. On the contrary, the distribution of DON is related to the biological activities in which the maximum concentration was found with the concentration up to 24 nmol m-3 in spring.
The particle size distributions of nitrogen species demonstrate a clear source character. Combining the air mass backward trajectories with the particle size distributions indicate that the long-range transport of continental material is probably the main source for NH4+, the marine biological process for NO3-.
Dry depositional fluxes of particulate nitrogen species were calculated from the deposition velocity which is assumed to be a function of particle size. In this study, the nitrogen species in the forms of NH4+, NO2-, NO3- and DON averaged 340±233, 7.35±8.12 and 1469±760 and 115±130 mmol m-2 month-1, respectively.
中文摘要………………………………………………………………………………I
英文摘要…………………………………………………………………………….IV
表目錄………………………………………………………………………………..IX
圖目錄………………………………………………………………………………XI

第一章 前言…………………………………………………………………………..1
1.1簡介………………………………………………………………………………..1
1.2氮物種之重要性…………………………………………………………………..1
1.3研究目的…………………………………………………………………………..2

第二章 文獻回顧……………………………………………………………………..4
2.1自然界中之氮物種循環…………………………………………………………..4
2.2氮物種濃度之測定………………………………………………………………..6
2.3氮物種濃度於不同區域中之分佈情形…………………………………………..8

第三章 研究方法……………………………………………………………………11
3.1採樣地點…………………………………………………………………………11
3.2採樣方式與採樣儀器……………………………………………………………11
3.3濾紙樣本之前處理步驟…………………………………………………………12
3.4分析儀器…………………………………………………………………………13
3.5分析方法…………………………………………………………………………14
3.5.1銨鹽之分析方法………………………………………………………….14
3.5.2亞硝酸鹽之分析方法…………………………………………………….14
3.5.3硝酸鹽之分析方法……………………………………………………….15
3.5.4總水溶性無機氮之分析方法…………………………………………….16
3.5.5陰陽離子的分析方法…………………………………………………….17
3.6樣本之查核………………………………………………………………………17

第四章 結果與討論…………………………………………………………………19
4.1採樣地點之氣象基本資料………………………………………………………19
4.2總懸浮微粒………………………………………………………………………20
4.2.1總懸浮微粒之質量濃度分佈變化……………………………………….20
4.2.2總懸浮微粒之陰陽離子濃度分佈變化………………………………….22
4.2.2.1陰陽離子濃度最高值與最小值之探討……………………………..22
4.2.2.2陰陽離子濃度月平均分佈情形……………………………………..24
4.2.2.3陰陽離子濃度與質量濃度之相關性………………………………..25
4.2.2.4陰陽離子濃度比……………………………………………………..25
4.2.3總懸浮微粒之氮物種濃度分佈變化…………………………………….27
4.2.3.1總懸浮微粒中氮物種濃度極大、極小值之探討…………………..27
4.2.3.2總懸浮微粒中銨鹽濃度分佈情形之探討…………………………..30
4.2.3.3總懸浮微粒中亞硝酸鹽濃度分佈情形之探討……………………..32
4.2.3.4總懸浮微粒中硝酸鹽濃度分佈情形之探討………………………..32
4.2.3.5銨鹽、亞硝酸鹽、與硝酸鹽於水溶性無機氮中所佔比例之探討..34
4.2.3.6總懸浮微粒中水溶性無機氮濃度分佈情形之探討………………..35
4.2.3.7總懸浮微粒中水溶性有機氮濃度分佈情形之探討………………..37
4.2.3.8總懸浮微粒中水溶性無機與有機氮濃度分佈於總氮濃度中所佔之比例分佈探討……………….……………….……………….……………...39
4.2.3.9水溶性有機氮每月最高值發生日之探討…………………………..39
4.2.3.10 於不同來源之大氣總懸浮微粒中氮物種濃度之分佈情形……...40
4.2.3.11 於不同來源之大氣總懸浮微粒中銨鹽、亞硝酸鹽、與硝酸鹽於水溶性無機氮中所佔比例之探討……………………………………………..41
4.2.4總懸浮微粒之氮物種於不同粒徑之分佈情形………………………….42
4.2.4.1採樣期間內氮物種濃度平均粒徑分佈情形………………………..43
4.2.4.2採樣期間內氮物種濃度平均粒徑月分佈情形……………………..43
4.2.4.3探討氮物種於粗細顆粒分佈情形…………………………………..44
4.2.5沙塵暴時期總懸浮微粒中所含之氮物種濃度分佈情形……………….46
4.2.6氮物種通量之估算……………………………………………………….49
4.2.7氮物種通量所佔之比例探討…………………………………………….51

第五章 結論…………………………………………………………………………53
參考文獻……………………………………………………………………………106
附錄一 2004年7月至2005年12月氮物種濃度………………………………..112
表目錄
Table2.1 大氣中無機氮物種之種類與來源………………………………………..55
Table2.2 大氣中有機氮物種之種類………………………………………………..55
Table2.3 水溶性有機氮氧化方法…………………………………………………..56
Table2.4文獻研究區域中氮物種濃度分佈情形……………………………………56
Table3.1 銨鹽、亞硝酸鹽與硝酸鹽試劑之配置……………………………………57
Table3.2 銨鹽、亞硝酸鹽與硝酸鹽檢量線之配置…………………………………58
Table3.3 陰陽離子試劑之配置……………………………………………………..59
Table3.4 陰陽離子檢量線之配置…………………………………………………..59
Table3.5 測量陰陽離子參數之設定………………………………………………..60
Table3.6 氮物種樣本測定之查核…………………………………………………..60
Table3.7 有機氮氧化效率之查核…………………………………………………..60
Table4.1 採樣站之氣象基本資料…………………………………………………..61
Table4.2 總懸浮微粒之質量濃度…………………………………………………..62
Table4.3 總懸浮微粒之陰陽離子濃度極大極小值………………………………..62
Table4.4 總懸浮微粒之陰陽離子月平均濃度……………………………………..63
Table4.5 每月中主要離子濃度比…………………………………………………..64
Table4.6 陰陽離子與質量濃度之相關性…………………………………………..64
Table4.7 總懸浮微粒之氮物種極大值與極小值發生日期………………………..65
Table4.8 總懸浮微粒之氮物種濃度月平均分佈…………………………………..65
Table4.9 總懸浮微粒中每月NH4+、NO2-、NO3-於DIN中所佔之比例…………66
Table4.10 NH4+之濃度分佈與NO3-/DIN(%)之相關性……………………………..66
Table4.11 總懸浮微粒中DON之季平均濃度……………………………………..67
Table4.12 DIN與DON於TDN每月所佔之比例………………………………….67
Table4.13 每月DON濃度最高值發生日…………………………………………..68
Table4.14 不同來源區域之氮物種濃度……………………………………………68
Table4.15 個別氮物種於不同粒徑中所佔之平均比例……………………………68
Table4.16 各月中個別氮物種於不同粒徑中所佔之比例…………………………69
Table4.16 各月中個別氮物種於不同粒徑中所佔之比例(續)…………………….70
Table4.17 各月中個別氮物種於粗細顆粒中之濃度比例…………………………71
Table4.18 各月中個別氮物種之CMAD……………………………………………72
Table4.19 沙塵暴時期中DIN、DON與質量濃度…………………………………72
Table4.20 沙塵暴時期與一般採樣時期之DIN、DON與其於TDN所佔比例之比較…………………………………………………………………………………… 73
Table4.21個別氮物種之沉降速度…………………………………………………..73
Table4.22個別氮物種之沉降速度(Duce,1991)……………………………………..74
Table4.23個別氮物種之通量月分佈………………………………………………..74
Table4.24 NH4+通量與其濃度、濃度粒徑分佈之相關性…………………………75
Table4.25 NO2-通量與其濃度、濃度粒徑分佈之相關性………………………….75
Table4.26 NO3-通量與其濃度、濃度粒徑分佈之相關性………………………….75
Table4.27 DIN通量與NH4+、NO2-、NO3-通量之相關性…………………………75
Table4.28 DON通量與其濃度、濃度粒徑分佈之相關性…………………………75
Table4.29 各月中個別氮物種通量於總氮通量中所佔之比例……………………76
圖目錄
Fig2.1自然界氮物種之循環…………………………………………………….…..77
Fig2.2紐約與紐澤西來源之順風示意圖…………………………………………..77
Fig3.1 採樣地點示意圖…………………………………………………………….78
Fig3.2 前處理流程示意圖………………………………………………………….78
Fig4.1 溫度、風速與風向關係圖………………………………………………….79
Fig4.2 降雨量日變化分佈圖……………………………………………………….79
Fig4.3 降雨日佔採樣日之百分比………………………………………………….79
Fig4.4 總懸浮微粒質量濃度日變化情形………………………………………….80
Fig4.5 總懸浮微粒平均質量濃度月變化情形…………………………………….80
Fig4.6 鈉離子濃度日變化分佈圖………………………………………………….80
Fig4.7 鉀離子濃度日變化分佈圖………………………………………………….81
Fig4.8 鎂離子濃度日變化分佈圖………………………………………………….81
Fig4.9 鈣離子濃度日變化分佈圖………………………………………………….81
Fig4.10 氯離子濃度日變化分佈圖………………………………………………...82
Fig4.11 硫酸鹽離子濃度日變化分佈圖…………………………………………...82
Fig4.12 Cl-與Na+濃度極大值發生日之氣流軌跡回推圖…………………………82
Fig4.13 K+、Mg2+、Ca2+、SO42-濃度極大值發生日之氣流軌跡回推圖………...83
Fig4.14 Cl-與Na+濃度極小值發生日之氣流軌跡回推圖…………………………83
Fig4.15 K+、Mg2+、Ca2+、SO42-濃度極小值發生日之氣流軌跡回推圖………...83
Fig4.16 Cl-與SO42-濃度月平均分佈圖…………………………………………….84
Fig4.17 Na+濃度月平均分佈圖……………………………………………………..84
Fig4.18 K+、Mg2+、Ca2+濃度月平均分佈圖………………………………………84
Fig4.19 Cl-/Na+比例月分佈情形……………………………………………………85
Fig4.20 SO42-/Na+比例月分佈情形…………………………………………………85
Fig4.21 K+/Na+比例月分佈情形…………………………………………………….85
Fig4.22 Mg2+/Na+比例月分佈情形………………………………………………….86
Fig4.23 Ca2+/Na+比例月分佈情形…………………………………………………..86
Fig4.24 NH4+濃度日變化分佈情形…………………………………………………86
Fig4.25 NO2-濃度日變化分佈情形………………………………………………….87
Fig4.26 NO3-濃度日變化分佈情形………………………………………………….87
Fig4.27 DIN濃度日變化分佈情形………………………………………………….87
Fig4.28 DON濃度日變化分佈情形………………………………………………...88
Fig4.29 NH4+、NO3-、DIN、DON濃度極大值發生日氣流逆軌跡回推圖……...88
Fig4.30 NH4+、NO3-、DIN、DON濃度極小值發生日氣流逆軌跡回推圖………88
Fig4.31 NH4+濃度月變化分佈圖……………………………………………………89
Fig4.32 Jul-05氣流逆軌跡回推圖………………………………………………….89
Fig4.33 Sep-05氣流逆軌跡回推圖…………………………………………………89
Fig4.34 Oct-05氣流逆軌跡回推圖………………………………………………….89
Fig4.35 NO2-濃度月變化分佈圖……………………………………………………89
Fig4.36 NO3-濃度月變化分佈圖……………………………………………………90
Fig4.37 NH4+、NO2- 、NO3-於DIN所佔比例月分佈圖………………………….90
Fig4.38 DIN濃度月變化分佈圖…………………………………………………….90
Fig4.39 Jun-05氣流逆軌跡回推圖………………………………………………….91
Fig4.40 Aug-05氣流逆軌跡回推圖…………………………………………………91
Fig4.41 DON濃度月變化分佈圖….………………………………………………..91
Fig4.42 DON濃度季變化分佈圖….………………………………………………..91
Fig4.43 DIN與DON於TDN所佔比例月變化分佈情形…………………………92
Fig4.44 每月DON濃度最高值發生日之氣流逆軌跡回推圖……………………..92
Fig4.44 每月DON濃度最高值發生日之氣流逆軌跡回推圖(續)…………………93
Fig4.45 每月DON濃度最高值發生日之NH4+/DIN(%)與每月平均NH4+/DIN(%)分佈情形比較圖……………………………………………………………………..94
Fig4.46 每月DON濃度最高值發生日之SO42-/Na+分佈圖………………………94
Fig4.47 各區域來源象徵性氣流逆軌跡回推圖……………………………………94
Fig4.47 各區域來源象徵性氣流逆軌跡回推圖(續)……………………………….95
Fig4.48 各區域來源之氮物種濃度分佈情形………………………………………95
Fig4.49 各區域來源之NH4+、NO2-、NO3-於DIN所佔比例之分佈情形……….96
Fig4.50 個別氮物種於不同粒徑中所佔之比例分佈………………………………96
Fig4.50 個別氮物種於不同粒徑中所佔之比例分佈(續)………………………….97
Fig4.51 個別氮物種於不同粒徑中所佔之比例月分佈……………………………98
Fig4.51 個別氮物種於不同粒徑中所佔之比例月分佈(續)……………………….99
Fig4.52 個別氮物種於粗細顆粒中所佔之比例月分佈……………………………99
Fig4.52 個別氮物種於粗細顆粒中所佔之比例月分佈(續)……………………100
Fig4.53 個別氮物種之CMAD月分佈情形…………………………………….100
Fig4.53 個別氮物種之CMAD月分佈情形(續)…………………………………101
Fig4.54 Ca採樣時期之氣流逆軌跡回推圖……………………………………….101
Fig4.54 Ca採樣時期之氣流逆軌跡回推圖(續)…………………………………102
Fig4.55 沙塵暴時期中大氣懸浮微粒之DIN、DON與質量濃度分佈情形…….102
Fig4.56 沙塵暴時期間 PM 10 濃度分佈情形…………………………………103
Fig4.57 沙塵暴時期間 DON濃度高值發生日之氣流逆軌跡回推圖………….103
Fig4.58 NH4+、NO2-、NO3-、DIN、DON通量月分佈情形……………………103
Fig4.58 NH4+、NO2-、NO3-、DIN、DON通量月分佈情形(續)………………..104
Fig4.58 NH4+、NO2-、NO3-、DIN、DON通量月分佈情形(續)………………...105
Fig4.59 各月中個別氮物種通量於總氮通量中所佔之比例分佈………………..105
(Anon.), 1999. American water systems slow to recover from acid rain. Marine Pollution Bulletin 38, 1059–1060.

ApSimon, H.M., Kruse, M., Bell, J.N.B., 1987. Ammonia emissions and their role in acid deposition. Atmospheric Environment 21, 1939–1946.

Artaxo, P., 2001. The atmospheric component of biogeochemical cycles in the Amazon basin, in The Biogeochemistry of the Amazon Basin, edited by M. McClain, R. L. Victoria, and J. E. Richey, pp. 42– 52, Oxford Univ.Press, New York.

Asman, W.A.H., Sutton, M.A., Schjorring, J.K., 1998. Ammonia: emission, atmospheric transport and deposition. New Phytologist 139, 27–48.

Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx, Atmospheric Environment 34, 2063–2101.

Bronk, D.A., Lomas, M.W., Glibert, P.M., Schukert, K.J., Sanderson, M.P., 2000. Total dissolved nitrogen analysis: comparisons between the persulfate, UV and high temperature oxidation methods. Marine Chemistry 69, 163–178.

Buhr, M. P., Parrish, D. D., Norton, R. B., Fehsenfeld, F. C., Sievers, R. E.,
and Roberts, J. M., 1990. Contribution of organic nitrates to the total reactive nitrogen budget at a rural eastern United States site. Journal of Geophysical Research 95(D7), 9809– 9816.

Burnett, W. E., 1969. Air pollution from animal wastes: Determination of alodors by gas chromatographic and organoleptic techniques. Environmental Science and Technology 3(8), 744–749.

Bytnerowicz, A., and Fenn, M. E. , 1996. Nitrogen deposition in California forests—A review. Environment Pollution 92(2), 127–146.

Cape, J.N., Kirika, A., Rowland, A.P., Wilson, D.S., Jickells, T.D., Cornell, S.E., 2001. Organic nitrogen in precipitation: real problem or sampling artefact? The Scientific World 1(S2), 230–237.

Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., Zacchei, P., and Decastrovasconcellos, P., 1995. The ubiquitous occurrence of nitro-PAH of photochemical origin in airborne particles. Annali di Chimica 85(7– 8), 455–469.

Cunningham, W.P., Cunningham, M.A., 2004. Principles of Environmental Science: Inquiry and Applications. Mc Graw Hill p42.

Cornell, S.E., Jickells, T.D., Cape, J.N., Rowland, A.P., Duce, R.A., 2003.Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmospheric Environment 37, 2173-2191.

Cornell, S.E., Jickells, T.D., Thornton, C.A., 1998. Urea in rainwater and atmospheric aerosols. Atmospheric Environment 32, 1903–1910.

Cornell, S.E., Mace, K., Coeppicus, S., Duce, R., Huebert, B., Jickells, T., Zhuang, L.Z., 2001. Organic nitrogen in Hawaiian rain and aerosols. Journal of Geophysical Research 106, 7973–7983.

Dimashki, M., Harrad, S., and Harrison, R. M., 2000. Measurements of nitro-PAH in the atmospheres of two cities. Atmospheric Environment 34(15), 2459–2469.

Duce, R.A., Unni, C.K., 1980. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science 209, 1522-1524.

Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W., Lemly, A. D., McNulty, S. G., Ryan, D. E., and Stottlemyer, R., 1998. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Application 8(3), 706–733.

Goodchild, R.G., 1998. EU Policies for the reduction of nitrogen in water: the example of the nitrates directive. Environmental Pollution 102, 737–740.

Gordon, R., Herman, S., 2001. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado. Atmospheric Environment 35, 1105-1109.

Gorzelska, K., Galloway, J.N., Watterson, K., Keene, W.C.,1992. Water-soluble primary amine compounds in rural continental precipitation. Atmospheric Environment 26A, 1005–1018.

Havers, N., Burba, P., Klockow, D., and Klockow-Beck, A., 1998a. Characterization of humic-like substances in airborne particulate matter by capillary electrophoresis. Chromatographia 47(11 –12), 619– 624.

Havers, N., Burba, P., Lambert, J., and Klockow, D., 1998b. Spectroscopic characterization of humic-like substances in airborne particulate matter. Journal of Atmospheric Chemistry 29(1), 45– 54.

Hidy, G.M., 1984. Source-receptor relationships for acid deposition: pure and simple? Journal of the Air Pollution Control Federation 34, 518–531.

Jacobson, M.C., Hansson, H.C., Noone, K.J., Charlson, R.J., 2000. Organic atmospheric aerosols: review and state of the science. Reviews of Geophysics 38, 267-294.

Keene, W.C., Montag, J.A., 2002. Organic nitrogen in precipitation over Eastern North America. Atmospheric Environment 36, 4529-4540.

Luo, Y., Yang, X., Carley, R. J., 2001. Effects of geographical location and land use on atmospheric deposition of nitrogen in the State of Connecticut. Environmental Pollution 124, 437–448.

Mace, K.A., Artaxo, P., Duce, R.A., 2003. Water-soluble organic in Amazon Basin aerosols during the dry (biomass burning) and wet season. Journal of geophysical research 108, D16, 4512.

Mace, K.A., Duce, R.A., Tindale, N.W., 2003. Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia. Journal of geophysical research 108, D11, 4338.

Mace, K. A., Kubilay, N., Duce, R. A., 2003. Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: An association with atmospheric dust. Journal of geophysical research 108, D10, 4320.

Milne, P.J., Zika, R.G., 1993. Amino acid nitrogen in atmospheric aerosols: occurrence, sources, and photochemical modification. Journal of Atmospheric Chemistry 16, 361–398.

Mopper, K., and Zika, R.G., 1987. Free amino acids in marine rains: Evidence for oxidation and potential role in nitrogen cycling. Nature, 325, 246– 249.

Mouli, P.C., Mohan, S.V., Reddy, S.J., 2003. A Study on major ion composition of atmospheric aerosols at Tirupati. Journal of Hazardous Materials B96, 217-228.

Munger, J.W., Fan, S.F., Bakwin, P.S., Goulden, M.L., Goldstein, A.H., Colman, A.S., Wofsy, S.C., 1998. Regional budgets of nitrogen oxides from continental sources: variations of rates for oxidation and deposition with season and distance from source regions. Journal of Geophysical Research 103, 8355–8368.

Nakamura, T., Matsumoto, K., Uematsu, M., 2005. Chemical characteristics of aerosols transported from Asia to the East China Sea: an evaluation of anthropogenic combined nitrogen deposition in autumn. Atmospheric Environment 39, 1749–1758.

Nielsen, T., Egelov, A.H., Granby, K., and Skov, H., 1995. Observations on particulate organic nitrates and unidentified components of NOy.
Atmospheric Environment 29(15), 1757– 1769.

Novakov, T., and Penner, J. E.,1993. Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365(6449), 823– 826.

Paerl, H.W., 1997. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources.Limnology and Oceanography 42, 1154–1165.

Pai, S.C., Tsau, Y.J., Yang, T.I., 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta 434, 209-216.

Pai, S.C., Yang, C.C., 1990. Formation kinetic of the pink azo dye in the determination of nitrite in natural waters. Analytica Chimica Acta 232, 345-349.

Peierls, B., Paerl, H.W., 1997. Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton. Limnology and Oceanography 42, 1819–1823.

Pellizzari, E.D., Bunch, J.E., Berkley, R.E., and McRae, J.,1976. Determination of trace hazardous organic vapor pollutants in ambient atmospheres by gas chromatography/mass spectrometry/computer. Annali di Chimica 48(6), 803–807.

Raes, F., Dingenen, R., Vignati, E., Wilson, J., Putaud, J.P., Seinfeld, J.H., Adams, P., 2000. Formation and cycling of aerosols in the global troposphere. Atmospheric Environment 34, 4215–4240.

Rejesus, R.M., Hornbaker, R.H., 1999. Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Agriculture Ecosystems and Environment 75, 41–53.

Roberts, G. C., Andreae, M.O., Zhou, J., and Artaxo, P., 2001. Cloud condensation nuclei in the Amazon Basin: Marine conditions over a continent? Geophysical Research. Letters 28, 2807–2810.

Roberts, J. M., 1990. The atmospheric chemistry of organic nitrates. Atmospheric Environment 24, 243– 287.

Saxena, P., Hildemann, L.M., 1996. Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57-109.

Schemenauer, R.S., 1986. Acidic deposition to forests: the 1985 chemistry of high elevation fog (CHEF) project. Atmospheres and Oceans 24, 303–328.

Shepson, P.B., Mackay, E., Muthuramu, K., 1996. Henry’s Law constants and removal processes for several atmospheric Β-hydroxy alkyl nitrates. Environmental Science and Technology 30, 3618–3623.

Talbot, R.W., et al., 1996. Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during September October 1991: results from PEM-West A. Journal of Geophysical Research—Atmospheres 101, 1713–1725.

Yang, H.H., Cheng, S.K., Hsieh, L.T., 2004.Characterization of nitrate particulate dry deposition by vacuum-deposuted thin film reaction method. Atmospheric Environment 38, 1785-1793.

Zhang, Q., Anastasio. C., 2002. Water-soulble organic nitrogen in atmospheric fine particles(PM2.5) form. Journal of Geophysical Research 107, 3-1-3-9.

Parker C. Reist 原著,鄭福田,劉希平譯,2001,微粒導論,臺北市編譯館出版,131-146
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top