跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周侑樺
研究生(外文):CHOU,YU-HUA
論文名稱:提升雨生紅球藻抗氧化能力及其對哺乳類細胞生長影響之研究
論文名稱(外文):Study on the Enhancement of Antioxidant Activity of Haematococcus pluvialis and its Effect on Mammalia Cell Growth
指導教授:李順來李順來引用關係
指導教授(外文):LEE,SHUN-LAI
口試委員:郭嘉信莊一全
口試委員(外文):GUO,JIA-HSINCHUANG,YI-CHUAN
口試日期:2018-01-30
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:69
中文關鍵詞:雨生紅球藻
外文關鍵詞:Haematococcus pluvialis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
雨生紅球藻(Haematococcus pluvialis)在生長環境受脅迫下能大量合成具有抗氧化能力之蝦紅素,紅球藻會視其生長環境如:營養源、光照、pH、溫度等因素的改變而合成蝦紅素來保護自己免受環境傷害 。 當雨生紅球藻暴露在不利的生長條件或環境壓力下,如營養源(氮或磷)缺乏、鹽度過高或強光照射下,會刺激綠色細胞開始轉變成紅色細胞,進行二級代謝物蝦紅素的累積。諸多因素,都會影響到雨生紅球藻累積蝦紅素的含量 。 在各項研究中指出,蝦紅素具商業開發和極高的營養價值。市售蝦紅素主要分為化學合成及生物萃取二種,生物萃取的主要來源為雨生紅球藻 (Haematococcus pluvialis) 、法夫酵母菌 (Phaffia rhodozyma)及磷蝦油(Krill oil)等。其中以雨生紅球藻所獲得的蝦紅素含量最高。
本研究使用兩階段培養雨生紅球藻,第一階段以添加 0.5%的 S 醱酵液之培養基配合白、紅、藍光培養至生長對數期,第二階段照射紫外光刺激二級代謝物產生。比較不同條件培養下其萃取物的抗氧化差異、進行 HPLC 檢測不同 LED
光培養,進而造成的化合物變化及對正常細胞及腫瘤細胞的存活率測試。
測試結果 5000Lux 培養紅球藻 , 以 95%乙醇萃取紅球藻萃取物進行 ABTS、DPPH 自由基清除率,依序為藍光培養組別(BA60)>白光培養組別(WA60) >紅光培養組別(RA60);三種 LED 光培養雨生紅球藻之萃取物進行 HPLC 分析結果蝦紅素異構物面積依序為白光培養組別(WA60)>紅光培養組別(RA60)>藍光培養組別(BA60) 。 白光、藍光、紅光培養雨生紅球藻萃取物濃度為 25µg/mL 對 CHO-K1細胞作用具有使正常細胞增生的作用;以 100µg/mL 對 MDA-MB231 細胞作用24 小時存活率 WA60 為 63% 、RA60 為 58%、BA60 為 62%,而經過48小時後存活率沒有隨時間下降。
Astaxanthin is a carotenoid which is known as “the king of antioxidant”,
Astaxanthin exhibits high antioxidant activity superior to most of the hydrophobic
antioxidants, showing pharmaceutical and nutraceutical value to be developed in
commercial production, mainly in aquatic plants and animals. When the red cyst
exposed to adverse growth conditions or environmental stress, such as the lack of
nutrient sources (nitrogen or phosphorus), salt is too high or strong light irradiation
will stimulate the green cells begin to turn into red cells and begin accumulation of
secondary metabolites-astaxanthin.
Therefore, this research aims to increase astaxanthin and the biomass of the
microalga by using different combination of illumination on with 95% EtOH extracts ,
we compare the result of different concentration level of antioxidant and survival rate
of normal cells and tumor cells.
The test results of ABTS, DPPH show that the radical scavenging rate of extract,
extracted by 95% EtOH which composed of Haematococcus pluvialis cultured under
5000 Lux, obtained the following performance order from highest to lowest: Blue
group (BA60)> White group (WA60)> Red group (RA60), respectively. The HPLC
indicates that the extracts of Haematococcus pluvialis cultured under three kinds of
LED light obtain the following results, showed in the order of the area of astaxanthin
isoforms from greatest to least: White light group (WA60), Red light group (RA60),
Blue light group (BA60), respectively. Cultured under White light, Blue light and Red
light, the Haematococcus pluvialis extracted by 95% EtOH, with a concentration of
25μg/mL, can induce survival rate in CHO-K1.With 100μg/mL on MDA-MB231, the
survival rate after 24 hours for the three groups WA60, BA60, RA60 displayed the following results: 63%, 62%, 58%, respectively. As a result, the survival rate did not decrease over time.
These results demonstrate that Haematococcus pluvialis cultured under red and
blue light with UV-irradiated can not only shorten the time to generate secondary
metabolites, but also increase the antioxidant properties and antitumor activities.
目次................................................................................................................................ 1
圖目錄............................................................................................................................ 3
表目錄............................................................................................................................ 4
中文摘要........................................................................................................................ 5
Abstract .......................................................................................................................... 6
第一章 緒論.................................................................................................................. 8
第二章 文獻回顧........................................................................................................ 10
2.1 雨生紅球藻(Haematococcus pluvialis)簡介........................................................ 10
2.2 雨生紅球藻中的蝦紅素應用................................................................................ 12
2.3 雨生紅球藻之生長影響參數................................................................................ 14
2.4 雨生紅球藻生產二級代謝物之影響參數............................................................ 17
2.5 自由基與氧化壓力之介紹.................................................................................... 21
第三章 研究動機與目的............................................................................................ 23
3.1 研究目的................................................................................................................ 23
3.2 實驗架構............................................................................................................... 24
第四章 實驗材料與方法............................................................................................ 25
4.1 實驗材料............................................................................................................... 25
4.3 實驗材料、儀器設備........................................................................................... 27
4.4 實驗方法............................................................................................................... 28
4.5 測量方式............................................................................................................... 29
4.6 細胞實驗............................................................................................................... 30
4.7 抗氧化能力評估................................................................................................... 33
4.7.1 清除 ABTS 自由基(2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) ...33
4.7.1.1 清除 ABTS 自由基能力原理 ....................................................................... 33
4.7.1.2 ABTS 藥品配置及實驗步驟 ....................................................................... 34
4.7.2 清除 1,1-diphenyl-2-picryl hydrazyl(DPPH) ................................................ 35
4.7.2.1 DPPH 清除原理 ............................................................................................. 35
4.6.2.2 DPPH 藥品配置 ............................................................................................. 35
4.7.2.3 清除 DPPH 實驗步驟 .................................................................................. 36
4.8.1 HPLC 偵測波長及動相條件的選擇 ................................................................. 37
第五章 結果與討論.................................................................................................... 38
5.1 不同培養參數對雨生紅球藻生長情形之探討.................................................... 38
5.1.1 不同光照條件培養雨生紅球藻生長之影響..................................................... 38
5.1.2 不同培養基對雨生紅球藻生長之探討............................................................. 42
5.2 不同培養條件對雨生紅球藻萃取液抗氧化能力之影響................................... 44
5.2.1 不同光照條件對雨生紅球藻萃取液之清除 ABTS 自由基能力測定 ........... 44
5.2.2 不同光照條件培養雨生紅球藻萃取液清除 DPPH 自由基能力測定 ........... 46
5.3 以不同光照條件培養雨生紅球藻之酒萃物對倉鼠卵巢細胞(CHO-K1)及人類
乳癌細胞(MDA-MB-231)生長之影響 ....................................................................... 48
5.3.1 以不同光照條件培養雨生紅球藻之酒萃物對倉鼠卵巢細胞(CHO-K1)生長
之影響.......................................................................................................................... 48
5.3.2 以不同光照條件培養雨生紅球藻之酒萃物對人類乳癌細胞(MDA-MB-231)
生長之影響.................................................................................................................. 51
5.4 經由不同光照條件培養雨生紅球藻所得萃取物進行 HPLC 分析 .................. 53
5.5 結論........................................................................................................................ 57
附錄.............................................................................................................................. 59
第七章 參考文獻........................................................................................................ 61
Aflalo, C., Meshulam, Y., Zarka, A., Boussiba, S., (2007). On the relative efficiency
of two- vs. one-stage production of astaxanthin by the green alga Haematococcus
Andrewes, A.G., Starr M.P., (1976). (3R,3’R)-Astaxanthin from the yeast Phaffia
rhodozyma, Phytochemistry, 15:1009-1011.
Boussiba, S., Lu, F., Vonshak, A., (1992). Enhancement and determination of
astaxanthin accumulation in green alga Haematococcus pluvialis. Methods
Enzym, 213: 386-391.
Boussiba, S., Wang, B., Yuan, J.P, Zarka, A., Feng, C.,(1999). Changes in pigments
profile in the green alga Haeamtococcus pluvialis exposed to environmental
stresses, Biotechnol. Lett. 21, 601-604.
Cepoi, L., (2014). Antioxidant activity in Haematococcus pluvialis cells during the
vital cycle Institute of Microbiology and Biotechnology, Microbial
Biotechnology, 9-10.
Chew, B., Mathison, B., Hayek, M., Massimino, S., Reinhart, G., & Park, J., (2011).
Dietary astaxanthin enhances immune response in dogs. Veterinary
Immunology and Immunopathology, 140: 199-206.
Cordero, B., Otero, A., Patino, M., Arredondo, B.O. and Fabregas, J., (1996).
Astaxanthin production from the green alga Haematococcus pluvialis with
different stress conditions, Biotechnol. Lett., 18, 213-218.
Domínguez-Bocanegra, A. R., Guerrero, L. I., Martinez, J. F., Tomasini, C. A., (2004).
Fung, I. P., (2005). Production of astaxanthin by the green microalga Chlorella
zofingiensis in the dark, Process Biochemistry Journal J, 1: 358.
Halliwell, B., (1987). Oxidants and human disease: some new concepts. FASEB J,1:
358.
Han, D., Li, Y., Hu, Q., (2013). Astaxanthin in microalgae: pathways, functions and
biotechnological implications,Algae, 28: 131-147.
Hata, N., Ogbonna, J. C., Hasegawa, Y., Taroda, H., Tanaka, H., (2001). Production
of astaxanthin in a sequential heterotrophic-photoautotrophic culture. Appl.
Phycol. 13, 395-402.
Higuera-Ciapara, I., Felix-Valenzuela, L., Goycoolea, F. M., (2006). Astaxanthin: A
Review of its Chemistry and Applications, Crit. Rev. Food Sci. and Nutr. 46:
185-196.
Hu, ZC., (2005). pH control strategy in astaxanthin fermentation bioprocess by
Xanthophyllomyces dendrorhous , 586-590.
Johnson, E. A., (1991). Astaxanthin from microbial sources , Crit. Rev. Biotechnol.
11: 297-326.
K, Kalyanasundaram., M, Graetzel., (2010). Artificial photosynthesis: biomimetic
approaches to solar energy conversion and storage. Current Opinion in
Biotechnology. 21, 298-310.
Kakizono, T., Kobayashi, M., Nagai, S., (1992). Effect of carbon/nitrogen ratio on
encystment accompanied with astaxanthin formation in a green alga
Haematococcus pluvialis. Ferment. Bioeng. 74, 403-405.
Kang, C. D., Lee, J. S., Park, T. H., Sim, S. J., (2007). Complementary limiting
factors of astaxanthin synthesis during photoautotrophic induction of
Haematococcus pluvialis: C/N ratio and light intensity. Appl. Microbiol.
Biotechnol. 74, 987-994.
Influence of environmental and nutritional factors in the production of
astaxanthin from Haematococcus pluvialis. Bioresource, 92(2): 209-14.
Foyer, C. H, Fletcher, J. M., (2001). Plant antioxidants:colour me healthy. Biologist,
48:115-20.
Naguib, Y. M., (2000). Antioxidant activities of astaxanthin and related carotenoids,
Journal of Agricultural and Food Chemistry, 48(4), 1150-1154.
Ogbonna, J.C., Tanaka, H., (2000). Light requirement and photosynthetic cell
cultivation Development of processes for efficient light utilization in
photobioreactors, Journal of Applied Phycology. 12, 207-218.
Orosa, M., Franqueira, D., Cid, A., (2005). Analysi s and enhancement of astaxanthin
accumulation in Haematococcus pluvialis. Bioresour Technol. 96(3): 373-8.
Palozza, P., Torelli, C., Boninsegna, A., Simone, R., Catalano, A., Mele, M. C., &
Picci, N., (2009). Growth-inhibitory effects of the astaxanthin-rich alga
Haematococcus pluvialis in human colon cancer cells, Cancer Letters, 283:
108-117.
Papas, A. M., (1993). Oil-soluble antioxidants in foods. Toxicol and Health,
9:123-150.
Parris, M. K., (2011). Astaxanthin , cell membrane nutrient with diverse clinical
benefits and anti-aging potential. Altern Med Rev. 16(4): 355-64.
Review.Phycologia, 6, 167-184.
pluvialis. Biotechnol. Bioeng. 98, 300–305.
Pulz, O., (2001). Photobioreactors: production systems for phototrophic
microorganisms, Applied Microbiology and Biotechnology. 57, 287-293.
Régnier, P., Jorge, B., Violeta R, R., (2015). Astaxanthin from Haematococcus
pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity.
Drugs 13, 2857-2874.
Ritto D., (2017). Astaxanthin induces migration in human skin keratinocytes via Rac1
activation and RhoA inhibition. Nutrition Research and Practice;11(4): 275-280.
Roberta, R., Pellegrini, N, Proteggente, A., (1999). Antioxidant activity applying an
improved ABTS radical cation decolorization assay. Free Radical Biology and
Medicine.Volume 26, Issues 9-10, 1231-1237.
Rosana, M., (2013). Modeling of Biomass Production of Haematococcus pluvialis.
Applied Mathematics, 4, 50-56.
Sarada, R., Usha, T., Ravishankar G. A., (2002). Influence of stress on astaxanthin
production in Haematococcus pluvialis grown under different culture conditions.
Process Biochem, 37: 623-627.
Scragg, A. H., Illman, A. M., Carden, A., (2002). Growth of microalgae with
increased calorific values in a tubular bioreactor, Biomass Bioenergy, 23, 67-73.
Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T., (1992). Antioxidative
properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion,
Agric. Food Chem.40: 945-48.
Shimidzu, N., (1991). Carotenoids as singlet oxygen quenchers in marine organisms,
Fisheries Science, 62, 134-137.
Shipton, C.A., Barber, J., (1994). In vivo and in vitro photoinhibition reactions
generate similar degradation fragments of D1 and D2 photosystem-II reaction
center proteins, European Journal of Biochemistry, 220: 801-808.
Solovchenko, A. E., (2011). Pigment composition, optical properties, and resistance
to photodamage of the microalga Haematococcus pluvialis cultivated under high
light, Russ. Plant Physiol, 58, 9-17.
Suyono, E. A., (2016). Effect High Salinity and Red-Blue Light Treatment on Lipid
Content of the Microalgae Chlorella zofingiensis Dönz as Biodiesel Source.
Applied Mechanics and Materials; Zurich Vol. 842: 103-110.
Suzuki, Y., Ohgami, K., Shiratori, K., Jin, X. H., Ilieva, I., Koyama, Y., Yazawa, K.,
(2006). Suppressive effects of astaxanthin against rat endotoxin-induced uveitis
by inhibiting the NF-kappaB signaling pathway, 82: 275-81.
Tanaka, T., Kawamori, T., Ohnishi, M., Makita, H., Mori, H., Satoh, K., and A.
Hara .,(1995a). Suppression of azomethane-induced rat colon carcinogenesis
by dietary administration of naturally occurring xanthophylls astaxanthin and
canthaxanthin during the postinitiation phase. Carcinogenesis. 16(12):
2957-2963.
Tanaka,T., Morishita, Y., Suzui, M., Kojima, T., Okumura, A., Mori, H., (1994).
Chemoprevention of mouse urinary bladder carcinogenesis by the naturally
occurring carotenoids astaxanthin. Carcinogenesis. 15(1): 15-19.
Tjahjono, A. E, Hayama, Y., Kakizono, T., Terada, Y., (1994). Hyperaccumulation
of astaxanthin in a green alga Haematococcus pluvialis at elevated
temperatureurs.
Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J., Masojidek, J., (2003). Interplay
between photochemical activities and pigment composition in an outdoor culture
of Haematococcus pluvialis during the shift from the green to red stage, J. Appl.
Phycol., 15: 127-136.
Vonshak, A., Boussiba, S., (1994). Effect of temperature and irradiance on growth of
Haematococcus pluvialis (chlorophyceae). Journal of Phycology, 30: 829-833.
Wang, B., Zarka, A., Trebst, A., Boussiba, S., (1991). Astaxanthin Accumulation in
Haematococcus pluvialis (Chlorophyceae) as an Active Photoprotective Process
under High Irradiance, Phycol, vol. 39, 1116-1124.
Wu, Z., Chen, G., Chong, S., (2010). Ultraviolet-B radiation improves astaxanthin
accumulation in green microalga Haematococcus pluvialis, Biotechnol Lett , 32:
1911-1914.
Xu, X., Nagarajan, H., Lewis, N. E., Pan, S., Cai, Z., Liu, X., Chen, W., Xie, M.,
(2011). The genomic sequence of the Chinese hamster ovary CHO-K1 cell line
(Cricetulus griseus).GigaScience.
Yasui, Y., Hosokawa, M., Mikami, N., Miyashita, K., Tanaka, T., (2011). Dietary
astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice
via modulation of the inflammatory cytokines, Chem Biol Interact.193: 79-87.
You, T ., Barnett, S. M., (2004) .Effect of light quality on production of extracellular
polysaccharides and growth rate of Porphyridium cruentum , Biochemical
Engineering Journal. 19, 251-258.
Yuan, J. P., (1998). Chromatographic Separation and Purification of
trans-Astaxanthin from the Extracts of Haematococcus pluvialis, Agric. Food
Chem.46, 3371-3375.
張寶玉,李夜光,李中奎,(2003),溫度、光照強度和 pH 對雨生紅球藻光合作用和生長速率的影響。海洋與湖沼。34 ( 5 ) : 558 -565
許自研,(2003),LED 燈培育擬球(Nannochloropsis oculata)生產生質柴油之成本分析。國立高雄海洋科技大學水碩士論文。
陳書秀,梁英,(2009),光照強度對雨生紅球藻葉綠素熒光特性及蝦青素含量的影響。南方水產第 5 卷第 1 期。
黃群真,林伯雄,(2006),戴奧辛誘發人類乳癌細胞株(MCF-及 MDA-MB-231 cells)
細胞毒性及核酸氧化損壞作用之研究。中興大學碩士論文。劉建國,( 2009 ),雨生紅球藻光合和呼吸速率研究。中國科學院。
蔣真祝,(2016 ),萃取雨生紅球藻中蝦紅素及其安定性之研究。宜蘭大學食品科學系碩士論文。
蔣霞敏,( 2005 ),溫度光照鹽度對雨生紅球藻誘變株蝦青素累積的調控。中國水產學報。
戴宜銘,(2007),利用酵母菌 Xanthophylomyces dendrorhous 同步生產蝦紅素及寡果糖最適化條件之研究。大同大學碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top