跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪敏軒
研究生(外文):Min-Hsuan Hung
論文名稱:基於動態阻抗之電量狀態及健康狀態估測技術及於鋰鐵電池充電器之應用
論文名稱(外文):Estimation Technique of State-of-Charge and State-of-Health Based on Dynamic Impedance and Applications for LiFePO4 Charger
指導教授:林長華林長華引用關係
指導教授(外文):Chang-Hua Lin
口試委員:林長華
口試委員(外文):Chang-Hua Lin
口試日期:2014-07-24
學位類別:博士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:132
中文關鍵詞:健康狀態電池管理系統充電器即時估測電量狀態全橋相移轉換器數位控制智慧充電
外文關鍵詞:real-time estimationintelligent chargingphase-shift full-bridge converterstate-of-charge (SOC)chargerdigital controlbattery management system (BMS)state-of-health (SOH)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出了動態阻抗法與投影法,分別用來估測電池之電量狀態與健康狀態。本文所提之估測技術是以電池模組在充放電的過程中,電池模組之電壓與電流變化量之比值,定義為動態阻抗,以作為計算電量狀態的基礎,不僅不需歷史資料或初始電量,所提之動態阻抗相較於各種習知的估測法,更能反應出電池之真正電氣特性,且具有即時估測的能力。實際上,電池的健康狀態會隨老化程度逐漸惡化,此將造成動態阻抗的特性也隨之改變,投影法即是透過計算動態阻抗對電池電量的變化率,來判斷電池的健康狀態。在本文中,詳述了所提之估測技術之原理說明,並且建立其數學模型,同時也詳述了數學模型之參數計算方式,最後再以實驗驗證所提之估測技術之正確性與準確性。
為了具體應用本文所提之估測技術,在本文中實現兩套不同架構的電池電量狀態與健康狀態即時估測系統。此兩套即時估測系統皆是以微控制器作為系統控制核心,但是分別結合電池管理系統與偵測電路,作為擷取電池資料的工具。而這兩套系統皆會搭配所提之估測技術來實現即時估測功能。再者,本文亦將所提之估測技術,加入至車載式數位控制磷酸鋰鐵電池充電器。所實現之磷酸鋰鐵電池充電器,同樣是以微控制器作為系統控制核心,當電池在充電時,微控制器會先根據電池之起始電量與所選擇之充電模式,再計算所需的充電電流大小。最後,在本文中分別詳述了所實現之各項系統之硬體架構,並且建立完整之設計準則,以及演算法之實現,並且以實驗來驗證系統之效能與準確性。
This dissertation proposes a dynamic impedance method and a projection method to respectively estimate the state-of-charge (SOC) and the state-of-health (SOH) of batteries. For the proposed methods, we defined the ratio between the changes in voltage and the changes in current during the charging and discharging processes of battery modules as the dynamic impedance, which further served as the basis to calculate the SOC of the battery. The proposed techniques do not require initial values, and the proposed dynamic impedance can better reflect the true electrical characteristics of batteries than conventional estimation methods. Furthermore, real-time calculations can be achieved using the proposed techniques. The SOH of batteries degenerates as the batteries age, which also changes the characteristics of the dynamic impedance. The projection method thus determines the SOH based on the rate of change in dynamic impedance with respect to the SOC. In this dissertation, the principle of the proposed techniques is detailed. And the mathematic model is also discussed in detail. Finally, all the experimental results agree with the theoretical predictions.
In order to use the proposed technique for some applications, we developed two SOC and SOH real-time estimation systems with different structures. The microcontroller is used to be the control core of the systems. Besides, they also combined with the battery management system (BMS) and the detection circuit to capture the data from the batteries, respectively. Furthermore, the proposed estimation technique was adopted into the developed systems to implement the real-time estimation feature. Moreover, an on-board LiFePO4 charger based on digital control incorporating with the proposed estimation technique is also implemented in this dissertation. Therefore, the microcontroller will calculate the corresponding charging current depends on the initial SOC and the selected charging mode when battery is charging. Finally, the hardware structures of the implemented systems are detailed in this dissertation. And the complete design considerations and algorithm are also described in detail. And then, the results of experiments verify the accuracy and feasibility of the proposed systems.
誌謝i
摘要ii
ABSTRACT.iii
目錄v
圖目錄vii
表目錄xii
第一章 緒論1
1.1 研究動機與背景.1
1.2 論文大綱.5
第二章 電池電量狀態與健康狀態之估測技術7
2.1 所提之電量狀態與健康狀態估測技術 7
2.2 動態阻抗法及投影法之參數計算13
第三章 以微控制器結合電池管理系統之電池 SOC 與SOH 即時估測系統17
3.1 SOC 與SOH 即時估測系統之簡介17
3.2 電池管理系統之架構與功能描述18
3.3 微控制器PIC18F4520 介紹 24
3.4 SOC 與SOH 即時估測系統之設計與實現25
第四章 以微控制器結合偵測電路之電池 SOC 與SOH 即時估測系統28
4.1 SOC 與SOH 即時估測系統簡介.28
4.2 偵測電路之架構 31
4.3 SOC 與SOH 即時估測系統之設計與實現31
第五章車載式數位控制之磷酸鋰鐵電池充電器之設計與實現40
5.1 車載式數位控制之磷酸鋰鐵電池充電器之介紹40
5.2 交錯式功率因數修正器簡介 41
5.3 交錯式功率因數修正器之設計與實現42
5.4 全橋相移轉換器之簡介46
5.5 全橋相移轉換器之設計與實現 47
5.6 智慧充電策略56
5.7 磷酸鋰鐵電池充電器之控制器之設計與實現60
5.8 輔助電源之設計與實現68
第六章 實驗結果78
6.1 動態阻抗法與投影法之實驗結果78
6.2 所提之即時估測系統之實驗結果84
6.3 車載式數位控制磷酸鋰鐵電池充電器之實驗結果89
6.4 智慧充電策略之實驗結果.100
第七章 結論與未來展望105
7.1 結論105
7.2 未來展望 106
參考文獻109
個人簡歷116
[1]W. Ko and T. Hahn, “Analysis of Consumer Preferences for Electric Vehicles Dissertation,” IEEE Trans. on Smart Grid, vol. 4, no. 1, pp. 437-442, March 2013.
[2]A. Dardanelli, M. Tanelli, B. Picasso, S. M. Savaresi, O. D. Tanna and M. D. Santucci, “A Smartphone-in-the-Loop Active State-of-Charge Manager for Electric Vehicles,” IEEE Trans. on Mechatronic, vol. 17, no. 3, pp. 454-463, June 2012.
[3]A. Hussein and I. Batarseh, “A Review of Charging Algorithms for Nickel and Lithium Battery Chargers, ” IEEE Trans. on Vehicular Technology, vol. 30, no. 3, pp. 830-838, March 2011.
[4]J. Kim and B. H. Cho, “State-of-Charge Estimation and State-of-Health Prediction of a Li-Ion Degraded Battery Based on an EKF Combined With a Per-Unit System,” IEEE Trans. on Vehicular Technology, vol. 60, no. 9, pp. 4249-4260, Nov. 2011.
[5]K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding and H. F. Ho, “Battery-Management System (BMS) and SOC Development for Electrical Vehicles,” IEEE Trans. on Vehicular Technology, vol. 60, no. 1, pp. 76-88, Jan. 2011.
[6]J. Kim, S. Lee and B. H. Cho, “Complementary Cooperation Algorithm Based on DEKF Combined With Pattern Recognition for SOC/Capacity Estimation and SOH Prediction,” IEEE Trans. on Power Electronics, vol. 27, no. 1, pp. 436-451, Jan. 2012.
[7]L. Y. Wang, M. P. Polis, G. G. Yin, W. Chen, Y. Fu and C. C. Mi, “Battery Cell Identification and SOC Estimation Using String Terminal Voltage Measurements,” IEEE Trans. on Vehicular Technology, vol. 61, no. 7, pp. 436-451, Sept. 2012.
[8]M. Shahriari and M. Farrokhi, “Online State-of-Health Estimation of VRLA Batteries Using State of Charge,” IEEE Trans. on Industrial Electronics, vol. 60, no. 1, pp. 191-202, Jan. 2013.
[9]L. Maharjan, S. Inoue, H. Akagi and J. Asakura, “State-of-Charge (SOC)-Balancing Control of a Battery Energy Storage System Based on a Cascade PWM Converter,” IEEE Trans. on Power Electronics, vol. 24, no. 6, pp. 1628-1636, June 2009.
[10]B. S. Bhangu, P. Bentley, D. A. Stone and C. M. Bingham,“Nonlinear Observers for Predicting State-of-Charge and State-of-Health of Lead-Acid Batteries for Hybrid-Electric Vehicles,” IEEE Trans. on Vehicular Technology, vol. 54, no. 3, pp. 783-794, May 2005.
[11]K. A. Smith, C. D. Rahn and C. Y. Wang, “Model-Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries,” IEEE Trans. on Control Systems Technology, vol. 18, no. 3, pp. 654-663, May 2010.
[12]M. Charkhgard and M. Farrokhi, “State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF,” IEEE Trans. on Industrial Electronics, vol. 57, no. 12, pp. 4178-4187, Dec. 2010.
[13]H. He, R. Xiong, X. Zhang, F. Sun and J. Fan, “State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model,” IEEE Trans. on Vehicular Technology, vol. 60, no. 4, pp. 1461-1469, May 2011.
[14]B. Pattipati, C. Sankavaram and K. R. Pattipati, “System Identification and Estimation Framework for Pivotal Automotive Battery Management System Characteristics,” IEEE Trans. on Systems, Man, And Cybernetics—Part C: Applications And Reviews, vol. 41, no. 6, pp. 869-884, Nov. 2011.
[15]A. H. Ranjbar, A. Banaei, A. Khoobroo and B. Fahimi, “Online Estimation of State of Charge in Li-Ion Batteries Using Impulse Response Concept,” IEEE Trans. on Smart Grid, vol. 3, no. 1, pp. 360-367, March 2012.
[16]C. S. Moo, K. S. Ng and Y. C. Hsieh, “Parallel Operation of Battery Power Modules,” IEEE Trans. on Energy Conversion, vol. 23, no. 2, pp. 701-707, June 2008.
[17]F. Zhang, G. Liu, L. Fang and H. Wang, “Estimation of Battery State of Charge With H∞ Observer: Applied to a Robot for Inspecting Power Transmission Lines,” IEEE Trans. on Industrial Electronics, vol. 59, no. 2, pp. 1086-1095, Feb. 2012.
[18]J. Kim, J. Shin, C. Chun and B. H. Cho, “Stable Configuration of a Li-Ion Series Battery Pack Based on a Screening Process for Improved Voltage/SOC Balancing,” IEEE Trans. on Power Electronics, vol. 27, no. 1, pp. 411-424, Jan. 2012.
[19]H. T. Lin, T. J. Liang and S. M. Chen, “Estimation of Battery State of Health Using Probabilistic Neural Network,” IEEE Trans. on Industrial Informatics, vol. 9, no. 2, pp. 679-685, May 2013.
[20]M. V. Micea, L. Ungurean, G. N. Carstoiu and V. Groza, “Online State-of-Health Assessment for Battery Management Systems,” IEEE Trans. on Instrumentation and Measurement, vol. 60, no. 6, pp. 1997-2006, June 2011.
[21]M. Gholizadeh and F. R. Salmasi, “Estimation of State of Charge, Unknown Nonlinearities, and State of Health of a Lithium-Ion Battery Based on a Comprehensive Unobservable Model,” IEEE Trans. on Industrial Electronics, vol. 61, no. 3, pp. 1335-1344, March 2014.
[22]M. Coleman, W. G. Hurley and C. K. Lee, “An Improved Battery Characterization Method Using a Two-Pulse Load Test,” IEEE Trans. on Energy Conversion, vol. 23, no. 2, pp. 708-713, June 2008.
[23]I. S. Kim, “A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding-Mode Observer,” IEEE Trans. on Power Electronics, vol. 25, no. 4, pp. 1013-1022, April 2010.
[24]D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth and D.U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” Journal of Power Sources, vol. 196, pp. 5334-5341, Jan. 2011.
[25]D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka-Guth and D.U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling,” Journal of Power Sources, vol. 196, pp. 5349-5356, Aug. 2010.
[26]T. Osaka, T. Momma, D. Mukoyama and H. Nara, “Proposal of novel 式uivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery,” Journal of Power Sources, vol. 205, pp. 483- 486, Jan. 2012.
[27]L. H. J. Raijmakers, D.L. Danilov, J.P.M. van Lammeren, M.J.G. Lammers and P.H.L. Notten, “Sensorless battery temperature measurements based on electrochemical impedance spectroscopy,” Journal of Power Sources, vol. 247, pp. 539-544, Sept. 2013.
[28]O2Micro OZ8920 Datasheet, O2Mirco International, Ltd., 2009.
[29]O2Micro Application Note-7, O2Mirco International, Ltd., 2008.
[30]Microchip Technology PIC18F2420/2520/4420/4520 Data Sheet, Microchip Technology Inc., 2008.
[31]F. Musavi, M. Edington, W. Eberle and W. G. Dunford, “Evaluation and Efficiency Comparison of Front End AC-DC Plug-in Hybrid Charger Topologies,” IEEE Trans. on Smart Grid, vol. 3, no. 1, pp. 413-421, March 2012.
[32]F. Yang, X. Ruan, Y. Yang and Z. Ye, “Interleaved Critical Current Mode Boost PFC Converter with Coupled Inductor,” IEEE Trans. on Power Electronics, vol. 26, no. 9, pp. 2404-2413, Sept. 2011.
[33]Y. Liu, K. Y. See and K. J. Tseng, “Conducted EMI Prediction of the PFC Converter Including Nonlinear Behavior of Boost Inductor,” IEEE Trans. on Electromagnetic Compatibility, vol. 55, no. 6, pp. 1107-1114, Dec. 2013.
[34]F. Musavi, W. Eberle and W. G. Dunford, “A Phase-Shifted Gating Technique With Simplified Current Sensing for the Semi-Bridgeless AC–DC Converter,” IEEE Trans. on Vehicular Technology, vol. 62, no. 4, pp. 1568-1576, May 2013.
[35]M. Narimani and G. Moschopoulos, “A New Interleaved Three-Phase Single-Stage PFC AC–DC Converter,” IEEE Trans. on Industrial Electronics, vol. 61, no. 2, pp. 648-654, Feb. 2014.
[36] Texas Instruments Inc. Application Report: SLUA479B, Texas Instruments Inc., 2010.
[37]H. Wang, S. Dusmez and A. Khaligh, “Design and Analysis of a Full-Bridge LLC-Based PEV Charger Optimized for Wide Battery Voltage Range,” IEEE Trans. on Vehicular Technology, vol. 63, no. 4, pp. 1603-1613, May 2014.
[38]Y. S. Kim, W. Y. Sung and B. K. Lee, “Comparative Performance Analysis of High Density and Efficiency PFC Topologies,” IEEE Trans. on Power Electronics, vol. 29, no. 6, pp. 2666-2679, June 2014.
[39]S. Dusmez, S. Choudhury, M. Bhardwaj and Bilal Akin, “A Modified Dual-Output Interleaved PFC Converter Using Single Negative Rail Current Sense for Server Power System,” IEEE Trans. on Power Electronics, vol. 29, no. 10, pp. 5116-5123, Oct. 2014.
[40]IXYS Data sheet, IXYS Inc. 2006.
[41]ON Semiconductor Data sheet, ON Semiconductor Inc. 2006.
[42]C. Liu, B. Gu, J. S. Lai, M. Wang, Y. Ji, G. Cai, Z. Zhao, C. L. Chen, C. Zheng and P. Sun, “High-Efficiency Hybrid Full-Bridge–Half-Bridge Converter With Shared ZVS Lagging Leg and Dual Outputs in Series,” IEEE Trans. on Power Electronics, vol. 28, no. 2, pp. 849-861, Feb. 2013.
[43]B. Gu, J. S. Lai, N. Kees and C. Zheng, “Hybrid-Switching Full-Bridge DC–DC Converter With Minimal Voltage Stress of Bridge Rectifier, Reduced Circulating Losses, and Filter Requirement for Electric Vehicle Battery Chargers,” IEEE Trans. on Power Electronics, vol. 28, no. 3, pp. 1132-1144, March 2013.
[44]J. L. Duarte, J’.s Lokos and F. B. M. van Horck, “Phase-Shift-Controlled Three-Level Converter With Reduced Voltage Stress Featuring ZVS Over the Full Operation Range,” IEEE Trans. on Power Electronics, vol. 28, no. 5, pp. 2140-2150, May 2013.
[45]W. Yu, J. S. Lai, W. H. Lai and H. Wan, “Hybrid Resonant and PWM Converter With High Efficiency and Full Soft-Switching Range,” IEEE Trans. on Power Electronics, vol. 27, no. 12, pp. 4925-4933, Dec. 2012.
[46]B. Y. Chen and Y. S. Lai, “Switching Control Technique of Phase-Shift-Controlled Full-Bridge Converter to Improve Efficiency Under Light-Load and Standby Conditions Without Additional Auxiliary Components,” IEEE Trans. on Power Electronics, vol. 25, no. 4, pp. 1001-1012, April 2010.
[47]F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai and C. H. Kuan, “DSP-Based Probabilistic Fuzzy Neural Network Control for Li-Ion Battery Charger,” IEEE Trans. on Power Electronics, vol. 27, no. 8, pp. 3782-3794, Aug. 2012.
[48]F. Krismer and J. W. Kolar, “Efficiency-Optimized High-Current Dual Active Bridge Converter for Automotive Applications,” IEEE Trans. on Industrial Electronics, vol. 59, no. 7, pp. 2745-2760, July 2012.
[49]Texas Instruments Inc. Application Report: SLUA560B, Texas Instruments Inc., 2010.
[50]X. Pei, S. Nie, Y. Chen and Y. Kang, “Open-Circuit Fault Diagnosis and Fault-Tolerant Strategies for Full-Bridge DC–DC Converters,” IEEE Trans. on Power Electronics, vol. 27, no. 5, pp. 2550-2565, May 2012.
[51]B. Gu, C. Y. Lin, B. Chen, J. Dominic and J. S. Lai, “Zero-Voltage-Switching PWM Resonant Full-Bridge Converter With Minimized Circulating Losses and Minimal Voltage Stresses of Bridge Rectifiers for Electric Vehicle Battery Chargers,” IEEE Trans. on Power Electronics, vol. 28, no. 10, pp. 4657-4667, Oct. 2013.
[52]J. H. Cho, K. B. Park, J. S. Park, G. W. Moon and M. J. Youn, “Design of a Digital Offset Compensator Eliminating Transformer Magnetizing Current Offset of a Phase-Shift Full-Bridge Converter,” IEEE Trans. on Power Electronics, vol. 27, no. 1, pp. 331-341, Jan. 2012.
[53]Microchip Technology dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Data Sheet, Microchip Technology Inc., 2011.
[54]H. S. Athab and D. D. C. Lu, “A High-Efficiency AC/DC Converter With Quasi-Active Power Factor Correction,” IEEE Trans. on Power Electronics, vol. 25, no. 5, pp. 1103-1109, May 2010.
[55]J. Zhang, D. D. C. Lu and T. Sun, “Flyback-Based Single-Stage Power-Factor-Correction Scheme With Time-Multiplexing Control,” IEEE Trans. on Industrial Electronics, vol. 57, no. 3, pp. 1041-1049, March 2010.
[56]J. K. Kim, S. W. Choi, C. E. Kim and G. W. Moon, “A New Standby Structure Using Multi-Output Full-Bridge Converter Integrating Flyback Converter,” IEEE Trans. on Industrial Electronics, vol. 58, no. 10, pp. 4763-4767, Oct. 2011.
[57]International Rectifier Data sheet, International Rectifier. 2003.
[58]ON Semiconductor Data sheet, ON Semiconductor Inc. 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊