跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:滿志謙
研究生(外文):Chih-chien Man
論文名稱:高溫應力對低碳鋼熱浸鍍鋁層之影響
論文名稱(外文):Effects of Stress on the Hot-dipped Aluminide coating on Mild Steel at High-temperature
指導教授:王朝正
指導教授(外文):C. J. Wang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:高溫應力鋁化層熱浸鍍鋁低碳鋼
外文關鍵詞:mild steelaluminide coatinghot-dip
相關次數:
  • 被引用被引用:5
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用低碳鋼經熱浸鍍純鋁後,於750 °C空氣氣氛進行無應力、不同應力及先經48小時高溫擴散後再給予應力之不同外加應力參數後,以光學顯微鏡來觀察應力對鋁鍍層顯微結構之影響。
 實驗結果顯示,由於外加應力造成鋁化層產生微量的變形,進而加速孔洞的形成。鋁化層於750 °C高溫擴散後,在相同時間施予應力之鋁化層較無應力之鋁化層生成較多的孔洞,並且在長時間高溫擴散後,有應力之鋁化層較無應力之鋁化層來得薄。在鋁鍍層裂紋生成的形貌上,鋁化層在低應力時,隨高溫擴散時間增長,裂孔成長於擴散形成的孔洞。鋁化層於較高應力時,裂口好發於初始裂紋及Fe-Al介金屬層之舌片狀形貌處。若經48小時無應力擴散後再給予應力,裂口易發生於先前因擴散生成的孔洞聚集處,並且裂口會觸及FeAl2相。
In this study, mild steel was coated by hot-dipping into a molten aluminum bath. The effect of stress on the microstructure of the aluminide layer was investigated by applying free stress、stress and after 48 hr free stress than applied stress on the aluminide layer during diffusion at 750 °C in static air.
  The results showed that the number of the void in the aluminide layer suffered stress is larger than in aluminide layer without applying stress. It also can be found that the thickness of the aluminide layer suffered stress is less than the thickness of the aluminide layer without stress. This phenomenon can be attributed to the deformation of the aluminide layer caused by the applied stress accelerated the formation of the void. From the observation of the morphology of crack in the aluminide layer, it revealed that the crack in the aluminide layer suffered low stress initial began at the void, which formed by the diffusion. While the aluminide layer suffered high stress, the crack was easily to form at the initial crack in the aluminide layer and the tongue-like Fe-Al intermetallic layer. In the experiment of aluminide layer after 48 hr free stress than applied on the aluminide layer, the crack mostly located at the void formed by the diffusion, and also the crack penetrated until it reached FeAl2 phase.
摘要 I
ABSTRACT II
第一章 前言 1
第二章 文獻回顧 3
2.1 熱浸鍍鋁 3
2.1.1 低碳鋼熱浸鍍鋁技術和應用 3
2.1.2 熱浸鍍鋁化層結構 4
2.1.3 熱浸鍍鋁化層高溫擴散之相變化 6
2.1.4 鋁化層之缺陷 7
2.1.5 Kirkendall效應 8
2.1.6 鋁化層之孔洞生成 9
2.1.7 熱應力 10
2.2潛變 12
2.2.1潛變行為 12
2.2.2 潛變曲線 12
2.2.3 潛變機構 16
2.2.4 潛變相關理論模式 21
2.2.5 潛變破壞 23
2.4.6 孔洞的形成 25
2.4.7 孔洞的成長 28
第三章 實驗方法 29
3.1實驗流程 29
3.2 實驗材料與試片準備 30
3.3 熱浸鍍鋁處理流程 31
3.3.1 試片前處理 31
3.3.2 熱浸鍍鋁作業 32
3.3.3 試片後處理 32
3.4 高溫定負載試驗 33
3.4.1 實驗架構 33
3.5 實驗代號 36
3.6 熱浸鍍鋁高溫擴散實驗 37
3.6.1 實驗架構 37
3.6.2 實驗方法 37
3.7 高溫定負載試驗 38
3.7.1長時間低負載高溫實驗之參數 38
3.7.2 短時間高負載高溫實驗 39
3.7.3 高溫擴散後負載實驗 40
3.8 實驗分析 41
第四章 實驗結果與討論 42
4.1 低碳鋼熱浸鍍鋁之顯微結構 42
4.2 有/無應力之高溫擴散 43
4.3 低應力之影響 47
4.3.1 應力1.16 MPa 47
4.3.2 應力1.42 MPa 48
4.3.3 有/無應力的作用 49
4.4 高應力下之影響 53
4.4.1 應力1.69 MPa 53
4.4.2 應力2.50 MPa 54
4.5 長時間擴散後再給予負載 59
4.5.1經48小時擴散後再12小時有/無應力 59
4.5.2經48小時擴散後再10小時有/無應力影響 59
4.5.3經48小時擴散後再30分鐘有/無應力 60
4.6 綜合歸納 65
4.6.1 裂縫與孔洞的生成 65
4.6.2 時間因素 66
4.6.3 應力的作用 67
4.6.4 基材的塑性變形 69
第五章 結論 70
參考文獻 71
1.C. J. Wang and C. C. Li, Surf. Coat. Techno., 177-178 (2004) 37.
2.S. Kobayashi and T. Yakou, Mater. Sci. Eng. A, 338 (2002) 44.
3.Y. Y. Chang, C. C. Tsaur, and J. C. Rock, Surf. Coat. Techno., 200 (2006) 6588.
4.C. J. Wang and S. M. Chen, Surf. Coat. Techno., 200 (2006) 6601.
5.H. Glasbrenner and H. U. Borgstedt, J. Nucl. Mater., 212-215 (1994) 1561.
6.E. Serra, H. Glasbrenner, and A. Perujo, Fusion Eng. Des., 41 (1998) 149.
7.A. Bahadur and O. N. Mohanty, Mater. Trans., JIM, 32 (1991) 1053.
8.S. C. Kwon and J. Y. Lee, Can. Metall. Quart., 20 (1981) 351.
9.A. Rahmel and W. Schwenk, Korrosion und Korrosionshutz von Stahlen, Verlag Chemie, Weinheim, 1977.
10.K. Bouche, F. Barbier, and A. Coulet, Mater. Sci. Eng. A, 249 (1998) 167.
11.G. Eggeler, W. Auer, and H. Kaesche, Z. Metallkd., 77 (1986) 239.
12.V. N. Yeremenko, Y. V. Natanzon, and V. I. Dybkov, J. Mater. Sci., 16 (1981) 1748.
13.N. A. El-Mahallawy, M. A. Taha, M. A. Shady, A. R. El-Sissi, A. N. Attia, and W. Reif, Mater. Sci. Techno., 13 (1997) 832.
14.T. S. Shih and S. H. Tu, Mater. Sci. Eng. A, 454 (2007) 349.
15.W. Deqing, S. Ziyuan, and Z. Longjiang, Appl. Surf. Sci., 214 (2003) 304.
16.T. Heumann and S. Dittrich, Z. Metallkd., 50 (1959) 617.
17.鄭維仁、王朝正,防蝕工程,第22卷,第4期,2008,第287 ~ 294頁。
18.A. D. Smigelskas and E. O. Kirkendall, Trans. AIME, 171 (1947) 130.
19.M. E. Kassner and T. A. Hayes, Int. J. Plasticity, 19 (2003) 1715.
20.W. Gao and G. Li, Heat Treatment of Metals, 6 (1991) 11.
21.P. C. Chen, Y. H. Chang, and C. J. Wang, “High-temperature Oxidation of Hot-Dipping Al-Si Coating in 430 Stainless Steels”, 第四屆海峽兩岸材料腐蝕與防護研討會論文集,2004,pp. 741-754。
22.日本複合材料協會,“熱浸鍍處理法”,表面技術雜誌,第117期,1975,第135頁。
23.G. Eggeler, W. Auer, and H. Kaesche, J. Mater. Sci., 21 (1986) 3348.
24.S. H. Hwang, J. H. Song, and Y. S. Kim, Mater. Sci. Eng. A, 390 (2005) 437.
25.R. W. Richards, R. D. Jones, P. D. Clements, and H. Clarke, Int. Mater. Rev., 39 (1994) 191.
26.D. Wang and Z. Shi, Appl. Surf. Sci., 227 (2004) 255.
27.K. Stein-Fechner, J. Konys, and O. Wedemeyer, J. Nucl. Mater., 249 (1997) 33.
28.J. L. Jordan and S. C. Deevi, Intermetallics, 11 (2003) 507.
29.H. Glasbrenner and J. Konys, Fusion Eng. Des., 58-59 (2001) 725.
30.D. R. G. Achar, J. Ruge, and S. Sundaresan, “Joining Aluminum and Steel, Especially by Means of Welding”, Aluminum Monography, Aluminum-Verlag, Dusseldorf, 1980.
31.J. H. Sun, E. Chang, C. H. Chao, and M. J. Cheng, Oxidation of Metals, 40 (1993) 465.
32.W. H. Cubberly, in: Metals Handbook, American Society for Metals, 9th Ed., 5 (1983) 333.
33.H. Fessler and T. H. Hyde, “Creep Deformation of Metals, Creep of Engineering Materials”, Pomeroy CD, Ed., A Journal of Strain Analysis Monograph. Mechanical Engineering Publication Limited, 1987, pp. 85-110.
34.Donald R. Askeland and Pradeep P. Phule,in: The Science and Engineering of Materials, Thomson, 5th Ed., 2006.
35.J. Cadek, in: Creep In Metallic Materials, Elsevier, 1988.
36.J. H. Gittus, in: Creep, Viscoelasticity & Creep Fracture in Solids, Elsevier, 1975.
37.Thomas H. Courtney, in: Mechanical Behavior of Materials, McGraw-Hill, 2nd Ed., 2000.
38.J. Weertman, Trans. Amer. Soc. Metals, 61 (1968) 681.
39.Robert E. Reed-Hill and Reza Abbaschian,in: Physical Metallurgy Principles, 全華圖書,第三版,2000。
40.C. Zener, in: Elasticity and Anelasticity of Metals, The University of Chicago Press, Chicago, 1948.
41.J. S. Waddington and K. Lofthouse, J. Nucl. Mater., 22 (1967) 205.
42.R. W. Balluffi and L. L. Seigle, Acta Met., 5 (1957) 449.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top