跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許彥琦
研究生(外文):Yen-Chi Hsu
論文名稱:苯乙烯馬來酐共聚物接枝聚醚胺之梳狀形高分子合成及其環境應答與自我排列性質
論文名稱(外文):Stimuli Responsive and Self Assembly Behaviors of Poly(Oxypropylene)-Amine Graft Poly(Styrene-co-Maleic Anhydride) Comb-Like Copolymers.
指導教授:林江珍
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:78
中文關鍵詞:溫度應答梳狀形高分子酸鹼應答梳狀形高分子自我排列銀線
外文關鍵詞:thermal-responsivecomb-branched copolymerpH-responsivecomb-branched copolymerself-assemblysilver fibers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以苯乙烯馬來酐之共聚物(poly(styrene-co-maleic anhydride)接枝不同結構之聚醚胺鏈段所合成之梳狀形高分子(SMA-POP)為研究主軸,研究分為三個章節,分別探討SMA-POP之(1)溫度應答及其形態變化(2)酸鹼應答及其型態變化,以及(3)利用此系列高分子作為樣板促使銀離子排列並還原為銀線

Chapter 1. Temperature- and pH-Responsive Properties of Oligo-(oxypropylene) - Amine Graft Poly(Styrene-co-Maleic Anhydride)
研究利用具有不同比例苯乙烯與馬來酸酐之共聚物做為主鏈,配合具有氫鍵之聚醚胺鏈段poly(oxypropylene)-diamines (POP-amine)合成一系列具有溫度與酸鹼應答性質之梳狀形高分子,藉由調整支鏈POP鏈段與主鏈styrene的比例可得Lower critical solution temperature (LCST)從11- 49 oC,高分子之溫度轉換亦受pH所影響。由原子力顯微鏡(TM-AFM)可觀察到此高分子於相轉換溫度前後的聚集情形。

Chapter 2. Stimuli-Responsive Micelles from Comblike Copolymers of Poly (Styrene-co-Maleic Anhydride) Graft Poly(oxypropylene)-Amines
延續上一章所提及所合成之SMA3000-POP400鏈段上帶有-COOH,-CH2CH(CH3)O-, -NH2, -CONH- 與 aromatic group等官能基,使得SMA3000-POP400除具有溫度應答之特性外,亦於不同酸鹼環境下具有不同之形態。藉由zeta potential 分析可得知高分子表面帶電性質為控制高分子微胞之尺寸與微胞形態之重要因素。隨pH 從10至3.5而表面電性由-31 mV增加至29 mV,亦藉由TEM分析得知高分子從random coil, micelle, nanoparticles直至inversed micelle. 微胞結構之變化亦表現在薄膜材料上,將不同pH值下所製備的薄膜可由親水性變為親油性。

Chapter 3. Hierarchical Self-Assemblies of Silver Rectangles and Fibrous Wires by Copolymer Templates and Visible-Light
支鏈為polyoxyalkylene 之梳狀形高分子具有螯合及穩定金屬離子之作用,配合高分子SMA2000-M2070製作奈米銀粒子的過程發現,緩慢的光環原方式可以使得銀粒子在高分子的作用下排列為銀線,此一線狀材料由寬0.6 - 1μm長0.4μm之不規則四邊形所堆積排列而成,長、寬可達370μm × 6.4μm。主要組成:銀佔95wt% (80 mole%)。同時具有良好之導電性(170 S/cm),並可進一步藉由升溫至250 oC將各線材融熔接著,將導電度再提升至910 S/cm.
In this article, copolymer oligo-(oxypropylene) - amine graft poly(styrene- co-maleic anhydride) is prepared by various structure. The synthesized comb-branched copolymer is stimuli responsive and could be used as a polymer template for preparing silver fiber by self-assembly. There are three chapters to describe the (a) temperature responsive, (b) pH responsive and (c) the self assembly behavior of these series of comb-branched copolymer.

Chapter 1. Temperature- and pH-Responsive Properties of Oligo-(oxypropylene) - Amine Graft Poly(Styrene-co-Maleic Anhydride)


A series of temperature- and pH-responsive copolymers were synthesized by grafting poly(oxypropylene)-diamines (POP-amine) onto poly(styrene-co-maleic anhydride) (SMA). Owing to the presence of multiple POP-pendants and their expressive hydrogen bonding properties, the copolymers in water exhibited Lower Critical Solution Temperature (LCST) behavior in the range of 11-49 oC depending on the POP segmental weight and the SMA backbone structures. Furthermore, the co-existence of -NH2 termini and amidoacid functionalities rendered the copolymers responsive to environmental pH changes. Structural variation in the SMA backbone, particularly the monomer ratio of styrene to maleic anhydride, POP length, and amine multiplicity, may significantly alter the shapes of copolymer aggregation in responding to the environmental pH and temperature. The responsiveness was observed on their morphological changes by tapping mode atomic force microscopy (TM-AFM) on mica film surface and also fluorescent properties in aqueous solution.

Chapter 2. Stimuli-Responsive Micelles from Comblike Copolymers of Poly (Styrene-co-Maleic Anhydride) Graft Poly(oxypropylene)-Amines

The pH-responsive micellization of the copolymers, prepared from the grafting reaction of poly(oxypropylene)-amine of 400 g/mol molecular weight (POP400) onto poly(styrene-co-maleic anhydride) (SMA) backbone, is presented. The comb-branched copolymers are consisted of oligo-styrene/ethylene in the backbone and amide-linkages with polar pendants of carboxylic acid, oxylpropylene-segment, and primary amine. The co-existence of –COOH and –NH2 in multiplicity rendered the SMA-POP copolymer responsive to pH and temperature. Conformational changes from random coil at pH 10 to spherical micelle with an average 50 nm diameter at pH 8.3 were observed by particle size analysis in water at ambient temperature. At the isoelectric point (IEP pH 8.2) of SMA3000-POP400, the polymer self-assembled into spherical polymer particles with the diameter range from 100 to 500 nm and stable after removing waters. In forming film, the surface exhibited different hydrophilic/hydrophobic properties, demonstrating the surface contact angle of 23o at pH 9.3 and 58o at pH 8.1. Inversion of micellar formation, depending the pH environment, through the non-covalent bonding of SMA backbone aggregation and water interaction with the pendent COOH and NH2 is proposed.

Chapter 3. Hierarchical Self-Assemblies of Silver Rectangles and Fibrous Wires by Copolymer Templates and Visible-Light
We observed the self-assemblies of silver rectangles and fibrous wires from silver nitrate reduction in the presence of copolymer template and visible-light. The copolymer in comb-like structure was facilely prepared from the grafting reaction of poly(oxyalkylene)-monoamine (POA-amine) onto the poly(styrene-co-maleic anhydride) (SMA). By dissolving AgNO3 in the aqueous copolymer and standing for days under visible light, unique formation of rectangle-shaped silver wires in the dimension of 1.6-6.4μm in diameter and 100-370μm in length was obtained. The formation process was monitored by UV-visible spectroscopy, particle size analysis, scanning electron microscope (SEM) and transmission electron microscope (TEM), showing first appearance of silver particles is 10 nm in diameter, followed by the intermediate rectangles (0.6-1.0 μm in width and 0.4 μm in length) and ultimately the precipitated micrometer wires. The growth of the precipitated silver fibers was accelerated by the exposure of visible light as the photo-reducing energy source. The microscale fibers are characterized to have silver content over 95 wt % (80 mole %) and with the conductivity of 170 S/cm.
摘要 i
Abstract iv
1 Chapter 1 Temperature- and pH-Responsive Properties of Oligo-(oxypropylene)-Amine Graft Poly(Styrene-co-Maleic Anhydride) 1
1.1. Abstract 1
1.2. Introduction 2
1.3. Experimental section 4
1.3.1. Materials 4
1.3.2. Instruments 5
1.3.3. Synthesis and Preparation 6
1.4. Result and Discussion 13
1.4.1. Synthesis and characterization the SMA-POP polyamines 13
1.4.2. The temperature-responsive behavior. 14
1.4.3. The pH-responsive properties. 17
1.4.4. Particle sizes versus pH. 18
1.4.5. The temperature-dependent (LCST) absorption of the UV-Vis spectra.37 21
1.4.6. Thermal analysis38 of coil-to-globule transition of the copolymers.39 23
1.4.7. The temperature-sensitive “surface-micelle” morphology formed on Mica surface. 26
1.5. Conclusion 31
2. Chapter 2 Stimuli-Responsive Micelles from Comblike Copolymers of Poly(Styrene-co-Maleic Anhydride) Graft Poly(oxypropylene)-Amines 32
2.1. Abstract 32
2.2. Introduction 34
2.3. Experimental section 36
2.3.1. Materials 36
2.3.2. Instruments 37
2.3.3. Synthesis and Preparation 38
2.4. Results and Discussion 40
2.4.1. Synthesis and Characterization of SMA3000-POP400. 40
2.4.2. Electrophoretic Mobility and particle size analysis of the Micelles. …………………………………………………………………..41
2.4.3. Morphology and mechanism of the pH-responsive micellization of SMA3000-POP400. 44
2.4.4. Preliminary Fluorescence Probe Experiments.[27] 49
2.4.5. pH responsive surface water wettibility properties on the SMA3000-POP400 film. 52
2.5. Conclusion 55
3. Chapter 3 Hierarchical Self-Assemblies of Silver Rectangles and Fibrous Wires by Copolymer Templates and Visible-Light 56
3.1. Abstract 56
3.2. Introduction 58
3.3. Experimental section 60
3.3.1. Materials 60
3.3.2. Instruments 61
3.3.3. Preparation of the SMA-POA or SMA2000-g-M2070 copolymers 61
3.3.4. Preparation of sliver self-assemblies and fibers 62
3.4. Results and Discussion 63
3.4.1. Reduction of silver ions with copolymer template and visible light …………………………………………………………………..63
3.4.2. Unique formation of the self-assembled silver rectangles or trapezoid cubes 71
3.4.3. Structural characterizations of the silver wires (XRD and EDS) …………………………………………………………………..75
3.5. Conclusion 78
References 79
List of Publications 83
Resume 84
(1) Anderson, D. G.; Burdick, J. A.; Langer, R. Science 2004, 305, 1923-1924.
(2) Roy, I.; Gupta, M. N. Chemistry & Biology 2003, 10, 1161-1171.
(3) Soppimath, K. S.; Tan, D. C.-W.; Yang, Y.-Y. Adv. Mater. 2005, 17, 318-323.
(4) Heffernan, M. J.; Murthy, N. Bioconjugate Chem. 2005, 16, 1340-1342.
(5) Ngai, T.; Auweter, H.; Behrens, S. H. Macromolecules 2006, 39, 8171-8177.
(6) Kobayashi, J.; Kikuchi, A.; Sakai, K.; Okano, T. Anal. Chem. 2001, 73, 2027-2033.
(7) Rzayev, J.; Hillmyer, M. A. J. Am. Chem. Soc. 2005, 127, 13373-13379.
(8) Wang, X.; Kim, Y. G.; Drew, C.; Ku, B. C.; Kumar, J.; Samuelson, L. A. Nano Lett. 2004, 4, 331-334.
(9) Kele, P.; Orbulescu, J.; Gawley, R. E.; Leblanc, R. M. Chem. Commun. 2006, 494 -1496.
(10) Wang, C.; Flynn, N. T.; Langer, R. Adv. Mater. 2004, 16, 1074-1079.
(11) Chang, J. H.; Shim, C. H.; Kim, B. J.; Shin, Y.; Exarhos, G. J.; Kim, K. J. Adv. Mater. 2005, 17, 634-637.
(12) Park, S. Y.; Lee, Y.; Bae, K. H.; Ahn, C.-H.; Park, T. G. Macromol. Rapid Commun. 2007, 28, 1172-1176.
(13) Hong, S. W.; Kim, K. H.; Huh, J.; Ahn, C. H.; Jo, W. H. Chem. Mater. 2005, 17, 6213-6215.
(14) Restrepo, A. S.; Pinzón, N. M.; Ju, L.-K. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 2950-2959.
(15) Park, C. W.; Lee, S. J.; Kim, D.; Lee, D. S.; Kim, S. C. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 1954-1963.
(16) Liu, X.-M.; Wang, L. S. L.-S.; Wang, L.; Huang, J.; He, C. Biomaterials 2004, 25, 5659-5666.
(17) Khoukh, S.; Oda, R.; Labrot, T.; Perrin, P.; Tribet, C. Langmuir 2007, 23, 94-104.
(18) Park, S. Y.; Han, D. K.; Kim, S. C. Macromolecules 2001, 34, 8821-8824.
(19) Iijima, M.; Nagasaki, Y. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1457-1469.
(20) Ying, L.; Kang, E. T.; Neoh, K. G. Langmuir 2002, 18, 6416-6423.
(21) Wang, W. C.; Ong, G. T.; Lim, S. L.; Vora, R. H.; Kang, E. T.; Neoh, K. G. Ind. Eng. Chem. Res. 2003, 42, 3740-3749.
(22) Peng, S.; Wu, C. Macromolecules 2001, 34, 568-571.
(23) Bromberg, L.; Temchenko, M.; Moeser, G. D.; Hatton, T. A. Langmuir 2004, 20, 5683-5692.
(24) Zhang, L.; Guo, R.; Yang, M.; Jiang, X.; Liu, B. Adv. Mater. 2007, 19, 2988-2992.
(25) Du, J.; Armes, S. P. J. Am. Chem. Soc. 2005, 127, 12800-12801.
(26) Fujii, S.; Cai, Y.; Weaver, J. V. M.; Armes, S. P. J. Am. Chem. Soc. 2005, 127, 7304-7305.
(27) Zhang, W.; Shi, L.; Ma, R.; An, Y.; Xu, Y.; Wu, K. Macromolecules 2005, 38, 8850-8852.
(28) Yin, X.; Stover, H. D. H. Macromolecules 2002, 35, 10178-10181.
(29) Lee, E. S.; Na, K.; Bae, Y. H. Nano Lett. 2005, 5, 325-329.
(30) Aathimanikandan, S. V.; Savariar, E. N.; Thayumanavan, S. J. Am. Chem. Soc. 2005, 127, 14922-14929.
(31) Moss, P. H. Nickel-Copper-Chromia catalyst and the preparation thereof, U. S. Patent 3,152,998 1964
(32) Yeakey, E. L. Process for preparing polyoxyalkylene polyamines, U. S. Patent 3,654,370 1972
(33) Inoue, T.; Yamashita, K. Journal of Colloid and Interface Science 2007, 308, 525-531.
(34) Li, X.; Han, Y.; An, L. Langmuir 2002, 18, 5293-5298.
(35) Lin, J. J.; Hsu, Y. C.; Wei, K. L. Macromolecules 2007, 40, 1579-1584.
(36) Patrickios, C. S.; Yamasaki, E. N. Analytical Biochemistry 1995, 231, 82-91.
(37) Choi, S. W.; Ritter, H. Macromol. Rapid Commun. 2007, 28, 101-108.
(38) Hager, S. L.; Macrury, T. B. J. Appl. Polym. Sci. 1980, 25, 1559-1571.
(39) VanDurme, K.; Rahier, H.; VanMele, B. Macromolecules 2005, 38, 10155-10163.
(40) Chung, B.; Choi, H.; Park, H. W.; Ree, M.; Jung, J. C.; Zin, W. C.; Chang, T. Macromolecules 2008, 41, 1760-1765.
(41) Antonietti, M.; Goltner, C. Angewandte Chemie International Edition in English 1997, 36, 910-928.
(42) Wiley, B. J.; Chen, Y.; McLellan, J.; Xiong, Y.; Li, Z. Y.; Ginger, D.; Xia, Y. Nano Lett. 2007, 7, 1032-1036.
(43) Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115-2120.
(44) Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Nature 2002, 415, 617-620.
(45) Förster, S.; Antonietti, M. Advanced Materials 1998, 10, 195-217.
(46) Moffitt, M.; Eisenberg, A. Chem. Mater. 1995, 7, 1178-1184.
(47) Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; Penner, R. M. Science 2001, 293, 2227-2231.
(48) Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289-1292.
(49) Zayats, M.; Baron, R.; Popov, I.; Willner, I. Nano Lett. 2005, 5, 21-25.
(50) Cheng, F.-Y.; Su, C.-H.; Yang, Y.-S.; Yeh, C.-S.; Tsai, C.-Y.; Wu, C.-L.; Wu, M.-T.; Shieh, D.-B. Biomaterials 2005, 26, 729-738.
(51) Sondi, I.; Salopek-Sondi, B. Journal of Colloid and Interface Science 2004, 275, 177-182.
(52) Henglein, A.; Giersig, M. J. Phys. Chem. B 1999, 103, 9533-9539.
(53) Sun, Y.; Xia, Y. Science 2002, 298, 2176-2179.
(54) Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Chem. Mater. 2001, 13, 2753-2755.
(55) Sohn, B. H.; Cohen, R. E. Journal of Applied Polymer Science 1997, 65, 723-729.
(56) Cornelissen, J. J. L. M.; Heerbeek, R. v.; Kamer, P. C. J.; Reek, J. N. H.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Advanced Materials 2002, 14, 489-492.
(57) Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775-778.
(58) Zinchenko, A. A.; Yoshikawa, K.; Baigl, D. Advanced Materials 2005, 17, 2820-2823.
(59) Bai, J.; Qin, Y.; Jiang, C.; Qi, L. Chem. Mater. 2007, 19, 3367-3369.
(60) Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Nano Lett. 2002, 2, 165-168.
(61) Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955-960.
(62) Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Chem. Mater. 2002, 14, 4736-4745.
(63) Luo, L. B.; Yu, S. H.; Qian, H. S.; Zhou, T. J. Am. Chem. Soc. 2005, 127, 2822-2823.
(64) Murphy, C. J.; Jana, N. R. Advanced Materials 2002, 14, 80-82.
(65) Zhang, Z.; Patel, R. C.; Kothari, R.; Johnson, C. P.; Friberg, S. E.; Aikens, P. A. J. Phys. Chem. B 2000, 104, 1176-1182.
(66) Setua, P.; Chakraborty, A.; Seth, D.; Bhatta, M. U.; Satyam, P. V.; Sarkar, N. J. Phys. Chem. C 2007, 111, 3901-3907.
(67) Taylor, T. I.; Cone, W. H. J. Am. Chem. Soc. 1933, 55, 3512-3515.
(68) Li, Y.; Wu, Y.; Ong, B. S. J. Am. Chem. Soc. 2005, 127, 3266-3267.
(69) James, T. H. J. Am. Chem. Soc. 1940, 62, 1654-1658.
(70) Nadagouda, M. N.; Varma, R. S. Cryst. Growth Des. 2008, 8, 291-295.
(71) Callegari, A.; Tonti, D.; Chergui, M. Nano Lett. 2003, 3, 1565-1568.
(72) Maillard, M.; Huang, P.; Brus, L. Nano Lett. 2003, 3, 1611-1615.
(73) Kapoor, S. Langmuir 1998, 14, 1021-1025.
(74) ZhouShu, Y.; Cui, H. Y.; Xiao, Y. W.; Yu, G. L.; Zu, R. Z.; Chen, Y. Advanced Materials 1999, 11, 850-852.
(75) Gou, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755-1760.
(76) Lin, J. J.; Cheng, I. J.; Chen, C. N.; Kwan, C. C. Ind. Eng. Chem. Res. 2000, 39, 65-71.
(77) Lin, J. J.; Hsu, Y. C.; Wei, K. L. Macromolecules 2007, 40, 1579-1584.
(78) Wei, K.-L.; Wu, J.-Y.; Chen, Y.-M.; Hsu, Y.-C.; Lin, J.-J. Journal of Applied Polymer Science 2007, 103, 716-723.
(79) Yang, Y.; Shi, J.; Tanaka, T.; Nogami, M. Langmuir 2007, 23, 12042-12047.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top