跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.163) 您好!臺灣時間:2025/11/25 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施柏任
研究生(外文):Shih, Bo-Ren
論文名稱:雙碼理論於推薦系統之驗證
論文名稱(外文):The validation of the dual-coding theory in recommender system
指導教授:梁文耀梁文耀引用關係
指導教授(外文):Liang, Wen-yao
口試委員:施穎偉黃俊哲梁文耀
口試委員(外文):Shih, ying-weiHuang, chun-tsunLiang, Wen-yao
口試日期:2018-06-06
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:71
中文關鍵詞:推薦系統雙碼理論資訊系統成功模型知覺便利性資訊系統後續接受模型
外文關鍵詞:Recommender systemdual-coding theoryInformation Systems Success Modelperceive conveniencepost-acceptance model of IS continuance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著網際網路普及,各類資訊快速在網路上散佈,使用者搜尋時能輕易地找到相關的產品或服務,而過多的資料量卻可能導致查詢結果的冗長,因此,若能使用推薦技術來幫助使用者,將會是解決這些問題的良好方式。推薦機制能實質上改善消費者決策,是很容易理解的。但推薦機制之介面設計如何影響決策或其他結果的測量上,卻嚴重不足,而雙碼理論與介面設計有相當大的關係,其概念為當人在接收資訊的時候,如果接觸到兩種或兩種以上的媒體等互相搭配使用時,會使得內容的理解、檢索與回想有正向的幫助,因此本研究決定使用「雙碼理論」的論點檢視推薦系統之成效。
本研究建構兩種推薦系統,一種為傳統之推薦系統,另一種則為以雙碼理論為基礎設計出來的推薦系統,採用實驗法,讓使用者分別使用兩種系統後,衡量兩者之間各項評估指標的差異。
實驗結果顯示,以雙碼理論為基礎設計出來之推薦系統在各構面皆優於傳統推薦系統,而在主效果路徑分析上除了知覺便利性對於滿意度的影響以外,其餘路徑皆為顯著。
In recent years, with the popularization of the Internet, various types of information are quickly disseminated on the Internet, users can easily find related products or services when searching, and excessive data volume may lead to tedious query results. Therefore, if Using recommended technologies to help users will be a good way to solve these problems. It is easy to understand that the recommendation mechanism can substantially improve consumer decision-making. However, how the design of the recommender mechanism affects the measurement of decisions or other results is seriously insufficient. Therefore, this study decided to use the “dual-coding theory” argument to examine the effectiveness of the recommender system.
This study constructs two recommender systems, one is a traditional recommender system, and the other is a recommender system based on the dual-coding theory. The experiment method is used to allow users to use the two systems separately to measure the two. Differences in various assessment indicators.
The experimental results show that the recommender system designed on the basis of the dual-coding theory is better than the traditional recommender system on all aspects of the facet. On the analysis of the main effect path, in addition to the perceive convenience on satisfaction, the rest of the path is significant.
中文摘要 i
Abstract ii
誌謝 iii
目錄 v
圖索引 vi
表索引 viii

第一章 緒論 1
第一節 研究背景、動機與目的 1
第二節 研究架構及流程 4

第二章 文獻探討 5
第一節 推薦系統 5
第二節 雙碼理論 8
第三節 資訊系統成功模型 10
第四節 知覺便利性 11
第五節 資訊系統後續接受模型 12

第三章 研究方法 15
第一節 研究模型與假說 15
第二節 變數之衡量方法 23
第三節 研究方法之選擇 27
第四節 實驗設計 28

第四章 資料分析 33
第一節 樣本統計分析 33
第二節 量表檢測 34
第三節 實驗指標分析 39
第四節 發現與討論 45

第五章 結論 47
第一節 研究結論 47
第二節 研究意涵 48
第三節 未來發展與限制 50

參考文獻 51

附錄一 研究問卷 69
中文部份
韓乾(譯)(民101)。研究方法原理(原作者:Earl Babbie)。台北市:五南文化。(原著出版年:1975)

原文部份
Ahn, T., S. Ryu, et al. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263-275.
Akcayol, M. A., Utku, A., Aydogan, E., & Mutlu, B.(2018) A weighted multi-attribute-based recommender system using extended user behavior analysis. Electronic Commerce Research and Applications, vol 28, 86-93
Al-Taie, M. Z., & Kadry, S. (2014). Visualization of Explanations in Recommender Systems. Journal of Advanced Management Science, 2(2), 140-144.
Aversano, L., & Tortorella, M. (2013). Quality evaluation of floss projects: Application to ERP systems. Information and Software Technology, 55(7), 1260-1276.
Balaban, I., Mu, E., & Divjak, B. (2013). Development of an electronic Portfolio system success model: An information systems approach. Computers & Education, 60, 396-411.
Belanche, D., Casaló, L. V., & Guinalíu, M. (2012). Website usability, consumer satisfaction and the intention to use a website: The moderating effect of perceived risk. Journal of Retailing and Consumer Services, 19(1), 124-132.
Berry, L. L., Seiders, K., & Grewal, D. (2002). Understanding service convenience. Journal of Marketing, 66(3), 1–17.
Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model, MIS Quarterly, 25(3), 351-370.
Blanchard, A.L., Markus, M.L., The experiences sense of a virtual community: characteristics and processes, The Database for Advances in Information Systems 35 (2004) 65–79
Boakye, K. G., McGinnis, T., Prybutok, V. R., & Paswan, A. K. (2014). Development of a service continance model with IT service antecedents, Journal of Retailing and Consumer Services, 21,717-724.
Bobadilla, J., Ortega, F., Hernando, A. & Glez-de-Rivera, G. (2013). A similarity metric designed to speed up, using hardware, the recommender systems k-nearest neighbors’ algorithm. Knowledge-Based Systems, 51, 27-34.
Bøe, T., Gulbrandsen, B., & Sørebø, Ø. (2015). How to stimulate the continued use of ICT in higher education: Integrating Information Systems Continuance Theory and agency theory. Computers in Human Behavior, 50, 375–384).
Brown, L.G. (1990). Convenience in services marketing. Journal of Services Marketing, 4(1), 53–59.
Brown, L.G.(1989)The strategic and tactical implications of convenience in consumer product market,international Journal of Consumer Marketing, 6, 13–19.
Calli, L., Balcikanli, C., Calli, F., Cebeci, H., & Seymen, O. (2013). Identifying factors that contribute to the satisfaction of students in e-learning. Turkish Online Journal of Distance Education, 14(1), 85-101.
Card, S. K., Mackinlay, J. D., & Shneiderman, B. (Eds.). (1999). Readings in information visualization: using vision to think. Morgan Kaufmann Publishers Inc.
Chen, C. C. & Tsai, J. L.(2017) Determinants of behavioral intention to use the Personalized Location-based Mobile Tourism Application: An empirical study by integrating TAM with ISSM. Future Generation Computer Systems, In Press.
Chen, S. C. (2012). To use or not to use: understanding the factors affecting continuance intention of mobile banking. International Journal Mobile Communications, 10(5), 490-507.
Chen, Y., Yang, L., Zheng, M. & Yang, Jun.(2018) Central or Peripheral? Cognition Elaboration Cues’ Effect on Users’ Continuance Intention of Mobile Health Applications in the Developing Markets. International Journal of Medical Informatics, In Press.
Chiu, C. M., Hsu, M. H., Lai, H. C., & Chang, C. M. (2012). Re-examining the influence of trust on online repeat purchase intention: The moderating role of habit and its antecedents. Decision Support Systems, 53(4), 835-845.
Chiu, C.M., Sun, S.Y., Sun, P.C., & Ju, T.L. (2007). An empirical analysis of the antecedents of web-based learning continuance. Computers & Education, 49(4), 1224-1245.
Clark, J.M. & Paivio, A., (1991) Dual Coding Theory and Education. Educational Psychology Review, 3(3), 149-210.
Cooper, D. & Schindler, P. (2013). Business Research Methods: McGraw-Hill Education.
Creswell, J.W. (2013). Research Design:Qualitative, Quantitative, and Mixed Methods Approaches (4ed.):SAGE Publications, Inc.
Daniels, B. C., Flack, J. C. & Krakauer, D.C.(2017)Daul coding Theory Explains Biphasic Collective Computation in neural decision-making. Frontiers in Neuroscience, 11(313), 1-16.
Davis, F. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
Delone, W. H. & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9-30.
Delone, W. H. & McLean, E. R.(1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-95.
Dwivedi, Y. K., Kapoor, K. K., Williams, M. D. & Williams, J. (2013). RFID systems in libraries: An empirical examination of factors affecting system use and user satisfaction. International Journal of Information Management, 33, 367-377.
Emerson, R. M. (1981). Social exchange theory. In M. Rosenberg, & R. H. Turner (Eds.), Social psychology: sociological perspectives (pp. 30-65). New York, NY: Basic Books.
Fang, Y. H., Chiu, C. M., & Wang, E. T. G. (2011). Understanding customers’ satisfaction and repurchase intention: An integration of IS success model, trust, and justice. Internet Research, 21(4), 479-503.
Flavian, C., Guinaliu, M. & Gurrea, R. (2006). The Role Played by Perceived Usability, Satisfaction, and Customer Trust on Website Loyalty. Information & Management, 43, 1-14.
Freeze, R.D. , Alshare, K.A. , Lane, P.L. & Wen, H.J. (2010). IS Success Model in E-Learning Context Based on Students' Perceptions. Journal of Information Systems Education , 21(2) , 173-184.
Gedikli, F., Jannach, D., & Ge, M. (2014). How should I explain? A comparison of different explanation types for recommender systems. International Journal of Human-Computer Studies, 72(4), 367-382.
Ghorab, M. R., Zhou, D., O’Connor, A. & Wade, V. (2013). Personalised Information Retrieval: survey and classification. User Modeling and User-Adapted Interaction, 23(4), 381-443.
Gorla, N. & Somers, T. M. (2014). The impact of IT outsourcing on information systems success. Information & Management, 51, 320-335.
Guo, G., Zhang, J., Thalmann, D. & Yorke-Smith, N. (2014). Leveraging prior ratings for recommender systems in e-commerce. Electronic Commerce Research and Applications. 13(6), 440-455.
Gulzar, Z., Leema, A. A., & Deepak, G.(2018) PCRS: Personalized Course Recommender System Based on Hybrid Approach. Procedia Computer Science, vol 125, 518-524
Gupta, J. & Gadge, J. (2015) Performance Analysis of Recommendation System Based On Collaborative Filtering and Demographics. 2015 International Conference on Communication, Information & Computing Technology.
Hadji, B. & Degoulet, P. (2016). Information system end-user satisfaction and continuance intention: A unified modeling approach. Journal of Biomedical Informatics, 61, 185–193.
Hadji, B., Martin, G., Dupui, I., Campoy, P., & Degoulet, P. (2016). 14 Years longitudinal evaluation of clinical information systems acceptance: The HEGP case. International Journal of Medical Informatics, 86, 20–29.
Hernández-Rodríguez, S., Hernández-Lira, C. A., Aguilar-Rico, A., Flores-Becerra, G., Flores-Méndez, J. & Vázquez-Cuchillo, O. (2016) A. Recommender system applied to the indirect materials selection process (RS-IMSP) for producing automobile spare parts. Computers in Industry, 82, 233–244.
Herz, M. F. & Diamantopoulos, A.(2013) Country-Specific associations made by consumers: a dual-coding theory perspective. Journal of International Marketing, 21(3), 95-121.
Hsu, H. H., & Chang, Y. Y. (2013). Extended TAM model: Impacts of convenience on acceptance and use of Moodle. Online Submission, 3(4), 211-218.
Hsu, M.H., Chang, C.M., Chu, K.K. & Lee, Y. J. (2014). Determinants of repurchase intention in online group-buying: The perspectives of DeLone & McLean IS success model and trust. Computers in Human Behavior, 36, 234-245
Huang, R. T.(2018) What motivates people to continuously post selfies? The moderating role of perceived relative advantage. Computers in Human Behavior, vol 80, 103-111
Huang, S. (2011). Designing utility-based recommender systems for e-commerce: Evaluation of preference-elicitation methods. Electronic Commerce Research and Applications, 10(4), 398-407.
Huang, T. L. & Chen, Y. M.(2014) Young audiences’ emotional experience on smartphone film: an application of dual-coding theory, 15(2), 193-208.
Indriana M. & Hwang C.S. (2014). Applying Neural Network Model to Hybrid Tourist Attraction Recommendations. ULTIMATICS, 6(2), 63-69.
Jamal, A. & Sharifuddin, J. (2014). Perceived value and perceived usefulness of halal labeling: The role of religion and culture. Journal of Business Research, 68(5) , 933-941.
Jensen, J. A., Walsh, P., Cobbs, J. & Turner B.A.(2015) The effects of second screen use on sponsor brand awareness: a dual coding theory perspective. Journal of Consumer Marketing, 32(2), 71-84.
Jia, Q., Guo, Y. & Barnes, S. J.(2017) Enterprise 2.0 post-adoption: Extending the information system continuance model based on the technology-Organizationenvironment framework. Computers in Human Behavior, 67, 95-105.
Jing, Y., Liang, Z. & Phelan, C.A. (2016) A Novel Recommendation Strategy for User-based Collaborative Filtering in Intelligent Marketing. Journal of Digital Information Management, 14(2), 81-91.
Jonathan L.H. , Joseph A.K. , Loren G.T. & John T.R. (2004). Evaluating Collaborative Filtering Recommender Systems. Journal ACM Transactions on Information Systems , 22(1) , 5-53.
Kardan, A. A. & Ebrahimi, M. (2013). A novel approach to hybrid recommendation systems based on association rules mining for content recommendation in asynchronous discussion groups. Information Sciences, 219, 93-110.
Kardan, A. A. & Ebrahimi, M. (2013). A novel approach to hybrid recommendation systems based on association rules mining for content recommendation in asynchronous discussion groups. Information Sciences, 219, 93-110.
Katerattanakul, P. & Siau, K. (1999). Measuring information quality of web sites: Development of an instrument. In Proceedings of the 20th International Conference on Information Systems, Charlotte, NC, 279-285.
Keller, K. L. (1987). Memory factors in advertising - The effect of advertising retrieval cues on brand evaluations. Journal of Consumer Research, 14(3), 316-333.
Kim, Y. A., & Phalak, R. (2012). A trust prediction framework in rating-based experience sharing social networks without a web of trust. Information Sciences, 191, 128–145.
Koc-Januchta, M., Hoffler, T., Thoma, G. B. & Prechct, H.(2017) Visualizers versus verbalizers: Effects of cognitive style on learning with texts and pictures e An eye-tracking study. Computers in Human Behavior, 68, 170-179
Konstan, J.A. &Riedl, J. (2012). Recommender systems from algorithms to user experience. User Modeling and User-Adapted Interaction, 22, 101-123.
Koo, C., Wati, Y. & Chung, N. (2013). A Study of Mobile and Internet Banking Service: Applying for IS Success Model. Asia Pacific Journal of Information Systems, 23(1), 65-86.
Ku, E.C.S. & Chen, C.D. (2013). Fitting facilities to self-service technology usage: evidence from kiosks in Taiwan airport. Journal of Air Transport Management, 32, 87-94.
Kwabena G. Boakye, Thomas McGinnis , Victor R. Prybutok , Audhesh K. Paswan.(2014). Development of a service continance model with IT service antecedents, Journal of Retailing and Consumer Services, 21 ,717-724.
Lee, G. & Lee, W. J. (2009). Psychological reactance to online recommendation services, Information & Management, 46,448-452.
Lee, G. & Lee, W. J. (2009). Psychological reactance to online recommendation services, Information & Management, 46,448-452.
Li, G. & Song, X. (2011). A New Visualization-oriented Knowledge Service Platform. Procedia Engineering, 15, 1859-1863.
Liaw, S. S. & Huang, H. M. (2013).Perceived satisfaction, perceived usefulness and interactive learning environments as predictors to self-regulation in e-learning environments, Computers & Education, 60(1), 14-24.
Limayem, M., & Cheung, C. M. (2011). Predicting the continued use of Internet- based learning technologies: The role of habit. Behaviour & Information Technology, 30(1), 91-99.
Liu, Y. & Jang, S. (2009). Perceptions of Chinese restaurants in the U.S.: What affects customer satisfaction and behavioral intentions? International Journal of Hospitality Management, 28(3), 338-348.
Loiacono, E. T., Watson, R. T., and Hoodhue, D. L. (2002). WEBQUAL: Measure of web site quality. Paper presented at the Marketing Educators Conference: Marketing Theory and Applications. Retrieved May 12, 2011, from the World Wide Web: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.4410&rep=rep1&type= pdf
Lu, C.C., & Tseng, V. S. (2009). A novel method for personalized music recommendation. Expert Systems with Applications, 36(6), 10035-10044.
Lu, J., Wu, D., Mao, M., Wang, W. & Zhang, G. (2015) Recommender system application developments: A survey. Decision Support Systems, 74, 12–32.
Lu, J., Wu, D., Mao, M., Wang, W. & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12-32.
Lwin, M. O., Morrin, M. & Krishna, Aradhna.(2010) Exploring the superadditive effects of scent and pictures on verbal recall: an extension of dual coding theory. Journal of Consumer Psychology, 20, 317-326.
Malhotra, N., Sahadev, S. & Purani, K.(2017) Psychological contract violation and customer intention to reuse online retailers: Exploring mediating and moderating mechanisms. Journal of Business Research, 75, 17-28.
Mason, R. O. (1978). Measuring information output: A communication systems approach. Information and Management, 1(5), 219-234.
Mathur, T., Das, G. & Paul, U. K.(2016) Convenience, Satisfaction, and Post-Purchase Behavior in India's Health Insurance Market. Journal of Global Marketing, 29(4), 218-232
Mayer, R. E. & Sims, K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389-401.
Meyer, R. (2010). Knowledge Visualization, in Trends in Information Visualization (edited by Baur, M., Sedlmair, M., Wimmer, R., Chen, Y., Streng, S., Boring, S., De Luca, A., & Butz A.). Hauptseminar Medieninformatik WS.
Moradi, P.& Ahmadian, S. (2015). A reliability-based recommendation method to improve trust-aware recommender systems. Expert Systems with Applications, 42, 7386–7398
Moreno, M.N. Segrera, S., López, V.F., Muñoz, M.D. & Sánchez, A.L. (2016). Web mining based framework for solving usual problems in recommender systems. A case study for movies' recommendation. Neurocomputing, 176, 72–80.
Munemasa, I., Tomomatsu, Y., Hayashi, K., & Takagi, T.(2018). Deep reinforcement learning for recommender systems. 2018 International Conference on Information and Communications Technology (ICOIACT)
Najjar, L. (1996). Multimedia information and learning. Journal of Educational Multimedia and Hypermedia, 5, 129-150.
Ochirbat, A., Shih, T. K., Chootong, C., Sommool, W., Gunarathne, W. K. T. M., Wang, H. H., & Ma, Z. H.(2015) Hybrid occupation recommendation for adolescents on interest, profile, and behavior. Telematics and Informatics, vol 35(3), 534-550
Oh, H., Jeong, M., & Baloglu, S. (2013). Tourists’ adoption of self-service technologies at resort hotels. Journal of Business Research, 66 (6), 692-699.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 460-469.
Ong, C. S., Lai, J. Y., & Wang, Y. S. (2004). Factors Affecting Engineers’ Acceptance of Asynchronous E-Learning Systems in High-Tech Companies. Information & Management, 41(6), 795-804.
Ortega, F. ,SáNchez, J.L. , Bobadilla, J.&GutiéRrez A. (2013). Improving Collaborative Filtering Based Recommender Systems Using Pareto Dominance. Information Sciences: an International Journal , 239 , 50-61.
Paivio, A. (2007). Mind and its evolution: A dual coding theoretical approach. New York: Psychology Press. Previously published by Lawrence Erlbaum Associates.
Paivio, A.(1971). Imagery and Verbal Processes. New York:Holt, Rinehart & Winston
Paivio, A.(1986). Mental representations:a dual coding approach , Oxford, England:Oxford University Press.
Paivio, A.(2013) Dual coding theory, word abstractness, and emotion: a critical review of Kousta et al. (2011). Journal of Experimental Psychology: General, 142, 282-287.
Pallud, J. & Straub, D. W. (2014). Effective website design for experience-influenced environments: The case of high culture museums. Information & Management, 51(3), 359-373.
Pan, S., & Cornell, R. (2002). Optimum Use of Video in Light of Cognitive Learning Theories. Journal of Educational Media & Library Sciences, 40(2), 156-169.
Parent, M. M., MacDonald, D., & Goulet, G. (2014). The theory and practice of knowledge management and transfer: The case of the Olympic Games. Sport Management Review, 17(2), 205-218.
Park, J., Kim, J., & Koh, J. (2010). Determinants of continuous usage intention in web analytics services. Electronic Commerce Research and Applications, 9(1), 61-72.
Park, S. , Zo, H., Ciganek, A. P. & Lim, G. G. (2011). Examining success factors in the adoption of digital object identifier systems. Electronic Commerce Research and Applications, 10, 626-636.
Pérez-Gallardo, Y., Alor-Hernandez, G. & Cortes-Robles, G. (2013). Collective intelligence as mechanism of medical diagnosis: The iPixel approach. Expert Systems with Applications, 40, 2726-2737.
Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: Models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236-263.
Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75.
Ramírez-Correa, P.E., Rondan-Cataluña, F.J., Arenas-Gaitán, J., & Alfaro-Perez, J.L. (2017). Moderating effect of learning styles on a learning management system’s success. Telematics and Informatics, 34, 272–286.
Rana, C., & Jain, S. K. (2014). An evolutionary clustering algorithm based on temporal features for dynamic recommender systems. Swarm and Evolutionary Computation, 14, 21-30.
Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002). Getting to know you: learning new user preferences in recommender systems. In Proceedings of the 7th international conference on Intelligent user interfaces, 127-134.
Reji, K. G., & Ravindran, D. S. (2012). An empirical study on service quality perceptions and continuance intention in mobile banking context in India. Journal of Internet Banking & Commerce, 17(1), 1-22.
Roscoe, J. T. (2004). Fundamental Research Statistics for the Behavioral Sciences.
Rose, S., Clark, M., Samouel, P., & Hair, N. (2012). Online customer experience in eretailing: An empirical model of antecedents and outcomes. Journal of Retailing, 88(2), 308-322.
Rosen, T., Fullwood, H. L. & Henley, T.B.(2012) Dual coding theory and split attention in the Learning of abstract words. International Journal of lnstructional Media, 39(3), 181-186.
Roy, S.K., Lassat, W.M. & Shekhar, V.(2016) Convenience and satisfaction: mediation of fairness and quality.The Service Industries Journal, 36(5-6), 239-260
Sanford, D., Ross, D., Rosenbloom, A. & Singer, D.(2017) Course convenience, perceived learning, and course satisfaction across course formats. e-Journal of Business Education and Scholarship of Teaching, 11(1), 69-84.
Shannon, C. E., and Weaver, W. The Mathematical Theory of Communication, Urbana, IL: University of Illinois Press, 1949.
Shinde, S. K. & Kulkarni, U. (2012). Hybrid personalized recommender system using centering-bunching based clustering algorithm. Expert Systems with Applications, 39(1), 1381-1387.
Son, J. & Kim, S.B.(2017) Content-based filtering for recommendation systems using multiattribute networks. Expert Systems With Applications, 89, 404-412.
Stefanovic, D., Marjanovic, U., Delic´, M., Culibrk, D., & Lalic, B. (2016). Assessing the success of e-government systems: An employee perspective. Information & Management,53, 717–726.
Stone, R. W., & Baker-Eveleth, L. (2013). Students’ expectation, confirmation, and continuance intention to use electronic textbooks. Computers in Human Behavior, 29(3), 984-990.
Sun, Y. & Mouakket, S. (2015). Assessing the impact of enterprise systems technological characteristics on user continuance behavior: An empirical study in China. Computers in Industry, 70, 153–167.
Sun, Y. & Mouakket, S. (2015). Assessing the impact of enterprise systems technological characteristics on user continuance behavior: An empirical study in China. Computers in Industry, 70, 153–167.
Tang, J.T. &Chiang, C.(2009)Perceived innovativeness, perceived convenience and TAM: Effects on mobile knowledge management, in: The 5th International Workshop on Mobile Commerce and Services (2009 WMCS), 413–420.
Tejeda-Lorente, A. , Bernab´e-Moreno, J. , Porcel, C. & Herrera-Viedma, E. (2014). Integrating Quality Criteria in a Fuzzy Linguistic Recommender System for Digital Libraries. Procedia Computer Science , 31 , 1036- 1043.
Thorat P.B. , Goudar R.M. & Sunita B. (2015). Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System. International Journal of Computer Applications , 110(4), 31-36.
Tseng, S. M. (2015). Exploring the intention to continue using web-based self-service. Journal of Retailing and Consumer Services, 24, 85-93.
Ullah, F., Sarwar, G. Lee, S. (2014). N-Screen Aware Multicriteria Hybrid Recommender System Using Weight Based Subspace Clustering. Scientific World Journal. http://dx.doi.org/10.1155/2014/679849.
Wang, H. C., Jhou, H. T., & Tsai, Y. S.(2018) Adapting topic map and social influence to the personalized hybrid recommender system. Information Science, In press
Wang, Y. S., Liao, Y. W. (2008). Assessing eGovernment systems success: A validation of the DeLone and McLean model of information systems success. Government Information Quarterly, 25, 717-733.
Wu, J.H. & Wang, Y.M. (2006). Measuring KMS success: A respecification of the DeLone and McLean's model. Information & Management , 43(6) , 728-739.
Xu, C.(2018) A novel recommendation method based on social network using matrix factorization technique. Information Processing and Management, 54, 463-474.
Xu, F., & Du, J. T.(2018)Factors influencing users’ satisfaction and loyalty to digital libraries in Chinese universities.Computers in Human Behavior, vol 83, 64-72
Xu, J. (2014). The nature and consequences of trade-off transparency in the context of recommendation agents. MIS Quarterly, 38(2), 379-406.
Xu, Y., Guo, X., Hao, J., Ma, J., Lau, R. Y. K., & Xu, W. (2012). Combining social network & semantic concept analysis for personalized academic researcher recommendation. Decision Support Systems, 54(1), 564-573.
Yoon, C., & Kim, S. (2007). Convenience and TAM in a ubiquitous computing environment: The case of wireless LAN. Electronic Commerce Research & Applications, 6(1), 102-112.
Zhao, X., Mattila, A.S. & Tao, L.S.E. (2008). The role of post-training self-efficacy in customers’ use of self service technologies. International Journal of Service Industry Management, 19(4), 492-505.
Zhao, X., Mattila, A.S. & Tao, L.S.E. (2008). The role of post-training self-efficacy in customers’ use of self service technologies. International Journal of Service Industry Management, 19(4), 492-505.
Zheng, Y.M., Zhao K. & Stylianou A. (2013). The impacts of information quality and system quality on users’ continuance intention in information-exchange virtual communities: an empirical investigation. Decision Support System, 56, 513-524.
Zheng, Y.M., Zhao K. & Stylianou A. (2013). The impacts of information quality and system quality on users’ continuance intention in information-exchange virtual communities: an empirical investigation. Decision Support System, 56, 513-524.
Zhu, Y., Heynderickx, I., & Redi, J. A. (2015). Understanding the role of social context and user factors in video Quality of Experience. Computers in Human Behavior, 49, 412-426.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊