|
1.Limitations of Internal Protective Devices in High – Voltage / High – Capacity Batteries Using Lithium-Ion Cylindrical Commerical Cells (2009) ,NASA Engineering and Safety Center Technical Bulletin NO. 09-02, Available at: https://www.nasa.gov/sites/default/files/files/345992main_NESCTB09-02_LiIonBatteryLimitations.pdf 2.Abada, S., Marlair, G., Lecocq, A., Petit, M., Sauvant-Moynot, V. and Huet, F. (2016) ‘Safety focused modeling of lithium-ion batteries: A review’, Journal of Power Sources, 306, pp. 178–192. 3.Doughty and Roth (2012) ‘A General Discussion of Li Ion Battery Safety’,The Electrochemical Society Interface .Summer, pp.37–44 Available at: https://www.electrochem.org/dl/interface/sum/sum12/sum12_p037_044.pdf 4.Duh, Y.-S., Wang, W.-F. and Kao, C.-S. (2014) ‘Novel validation on pressure as a determination of onset point for exothermic decomposition of DTBP’, Journal of Thermal Analysis and Calorimetry, 116(3), pp. 1233–1239. 5.Feng, X., Fang, M., He, X., Ouyang, M., Lu, L., Wang, H. and Zhang, M. (2014) ‘Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry’, Journal of Power Sources, 255, pp. 294–301. 6.Feng, X., Sun, J., Ouyang, M., Wang, F., He, X., Lu, L. and Peng, H. (2015) ‘Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module’, Journal of Power Sources, 275, pp. 261–273. 7.Fu, Y., Lu, S., Li, K., Liu, C., Cheng, X. and Zhang, H. (2015) ‘An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter’, Journal of Power Sources, 273, pp. 216–222.
8.Gao, L., Liu, S. and Dougal, R.A. (2002) ‘Dynamic lithium-ion battery model for system simulation’, IEEE Transactions on Components and Packaging Technologies, 25(3), pp. 495–505. 9.Golubkov, A.W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C., Fauler, G., Voitic, G., Thaler, A. and Hacker, V. (2014) ‘Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes’, RSC Adv., 4(7), pp. 3633–3642. 10.Jeevarajan, J. (2010) Safety limitations associated with commercial 18650 lithium-ion cells., Lithium Mobile Power and Battery Safety 2010 Available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100037250.pdf 11.Jeevarajan, J. (2014) ‘Lithium-Ion Batteries’, in Safety of Commercial Lithium-Ion Cells and Batteries. 2101 NASA PKWY, POWER SYSTEMS BRANCH, NASA JOHNSON SPACE CENTER, HOUSTON, TX, USA: Elsevier BV, pp. 387–407. 12.Jhu, C.-Y., Wang, Y.-W., Shu, C.-M., Chang, J.-C. and Wu, H.-C. (2011) ‘Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter’, Journal of Hazardous Materials. 13.Ju, C.-Y., Wang, Y.-W., Wen, C.-Y. and Shu, C.-M. (2012) ‘Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology’, Applied Energy, 100, pp. 127–131. 14.Lamb, J., Orendorff, C.J., Steele, L.A.M. and Spangler, S.W. (2015) ‘Failure propagation in multi-cell lithium ion batteries’, Journal of Power Sources, 283, pp. 517–523. 15.Larsson, F., Andersson, P., Blomqvist, P., Lorén, A. and Mellander, B.-E. (2014) ‘Characteristics of lithium-ion batteries during fire tests’, Journal of Power Sources, 271, pp. 414–420. 16.Larsson, F. and Mellander, B.. (2014) ‘Abuse by external heating, overcharge and short Circuiting of commercial lithium-ion battery cells’, Journal of the Electrochemical Society, 161(10), pp. A1611–A1617. 17.Lisbona, D. and Snee, T. (2011) ‘A review of hazards associated with primary lithium and lithium-ion batteries’, Process Safety and Environmental Protection, 89(6), pp. 434–442. 18.Roth, E.P. and Doughty, D.H. (2004) ‘Thermal abuse performance of high-power 18650 Li-ion cells’, Journal of Power Sources, 128(2), pp. 308–318. 19.Roth, E.P., Doughty, D.H. and Pile, D.L. (2007) ‘Effects of separator breakdown on abuse response of 18650 Li-ion cells’, Journal of Power Sources, 174(2), pp. 579–583. 20.Röder, P., Stiaszny, B., Ziegler, J.C., Baba, N., Lagaly, P. and Wiemhöfer, H.-D. (2014) ‘The impact of calendar aging on the thermal stability of a LiMn2O4–Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell’, Journal of Power Sources, 268, pp. 315–325. 21.Recommendations on the TRANSPORT OF DANGEROUS GOODS , SECTION 38 22.Bak, S.-M.,Hu, E.,Zhou, X.,Yu, Xiqian.,Senanayake, S.-D.,Cho, S.-J., Kim, K.-B.,Chung, K. –Y.,Yang, X.-Q.,Nam, K.-W.(2014) ‘Strctural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy’,Applied Materials & Interfaces ,6 , pp. 22594-22601 23.Sanyo lionT E (no date) Available at: http://www.rathboneenergy.com/articles/sanyo_lionT_E.pdf 24.Spinner, N.S., Field, C.R., Hammond, M.H., Williams, B.A., Myers, K.M., Lubrano, A.L., Rose-Pehrsson, S.L. and Tuttle, S.G. (2015) ‘Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber’, Journal of Power Sources, 279, pp. 713–721. 25.Spotnitz, R. and Franklin, J. (2003) ‘Abuse behavior of high-power, lithium-ion cells’, Journal of Power Sources, 113(1), pp. 81–100. 26.Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J. and Chen, C. (2012) ‘Thermal runaway caused fire and explosion of lithium ion battery’, Journal of Power Sources, 208, pp. 210–224. 27.林偉凱(2014) 認識新一代電池材料:鋰金屬. Available at: http://www.mirdc.org.tw/FileDownLoad%5CIndustryNews/20144109541941.pdf 28.蔡孟婷(2015) 商業用18650鋰離子電池熱失控特性研究. 29.呂學隆(2011) 鋰電池正極材料技術與產業趨勢(一)-總體 市場供需與發展. 30.官弘毅(2012) 18650 鋰離子電池之不同電壓與熱危害相關性研究. 31.林正宗(2014) Li-ion Battery簡介與使用. Available at: http://teacher.yuntech.edu.tw/kuopy/104%E5%AD%B8%E5%B9%B4%E7%AC%AC%E4%B8%80%E5%AD%B8%E6%9C%9F%E9%9B%BB%E6%BA%90%E8%88%87%E9%9B%BB%E6%B1%A0%E7%AE%A1%E7%90%86%E7%B3%BB%E7%B5%B1/%E9%9B%B2%E7%A7%91%E5%A4%A7-2014-%20Li-ion%20Battery_%E6%9E%97%E6%AD%A3%E5%AE%97.pdf 32.楊正平(2011) 鋰電池防爆「金鐘罩」-STOBA材料技術. Available at: http://ejournal.stpi.narl.org.tw/NSC_INDEX/Journal/EJ0001/10008/10008-07.pdf 33.歐瑋傑(2013) 正極材料的化學組成對鋰離子電池安全特性之研究. 34.陳郁玲(2015) 鋰離子電池之碳酸乙烯酯與正極材料危害特性研究. 35.謝采瑩(2013) 市售多種鋰離子二次電池密閉熱危害測試與評估. 36.鋰離子電池機能性電解液開發及應用 Available at: http://www2.fpg.com.tw/html/mgz/Mgz_epaper/126/43-6p13-18.pdf 37.鋰離子電池的安全議題 Available at: http://www.ul.com/global/documents/offerings/industries/hightech/batteries/battery_whitepaper_tc.pdf 38.鋰離子電池正極材料的研究進展 (2014) Available at: http://www.chinabaike.com/t/30826/2014/0619/2487528.html 39.陳鴻儀, 蘇靜怡and 吳弘俊(2011) 熱分析技術應用於添加STOBA 鋰電池之安全性研究. Available at: https://www.materialsnet.com.tw/DocPrint.aspx?id=9739
|