跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:刁培正
研究生(外文):Pei-Jen Tiao
論文名稱:多準則非凌越解評選方法之探討
論文名稱(外文):Study of Multiple Criteria Decision-making Methods on Non-dominated Solutions
指導教授:吳吉政吳吉政引用關係
指導教授(外文):Jei-Zheng Wu
口試委員:林國勝孔令傑
口試委員(外文):Kuo-Sheng LinLing-Chieh Kung
口試日期:2014-07-29
學位類別:碩士
校院名稱:東吳大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:79
中文關鍵詞:多準則決策分段線性觀點理論法類似度求理想解之順序偏好法VIKOR法ELECTRE法分析層級程序法偏好效用函數
外文關鍵詞:Multi-Criteria Decision MakingTOPSISVIKORELECTREPiecewise Linear Prospect Theory Method (PLP)AHPPreference Utility Function
相關次數:
  • 被引用被引用:12
  • 點閱點閱:818
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
現實生活中,多準則決策(Multiple Criteria Decision Making, MCDM)的應用非常廣泛,人們經常面臨涉及多個目標或準則相互衝突的決策問題。文獻已提供各種MCDM方法協助決策者提高決策品質。多準則決策方法透過不同的運算方式,加入權重以表示決策者的偏好,對方案內的準則進行評估,最後得到一組排序,供決策者參考。但這組排序是否即為符合決策者的偏好,其實難以確認,因為人們處理訊息的能力是有限的、難以釐清眾多方案數據間的關係。因此決策者可能無法得知多準則方法的方案排序,是否即為心中的理想方案。且文獻中大部分的MCDM方法皆未提出相關的信效度分析以證實所提出決策工具建議的排序即為決策者的理想排序。此外,在啟發決策者偏好時,決策者可能受認知偏誤理論影響,提供不一致的偏好資訊。例如觀點理論即主張基於參考點的不同將影響決策者對風險的態度。因此在不確定條件下的決策選擇,往往取決於結果與預期間的差距,而非結果本身。
綜合以上,本研究目的係檢驗並比較既有七種多準則決策方法的有效性,並建立一套模擬數據實驗流程,比較MCDM方法建議的方案排序與偏好效用函數所模擬決策者之排序的差異。同時,本研究並測試對MCDM方法有效性的控制變因,包括生成不同準則數、分配方式、是否為非凌越解集合的方案集合及三種權重方法等。在決策者偏好係用函數的部分,除了補償性、非補償性及部分補償的效用函數外,亦加入觀點理論之效用函數。針對方案間的比較,給予偏好效用函數不同的參數設定。決策者對風險的態度可分為風險中立、風險趨避及風險愛好三種,以表達觀點理論的主張。
本研究結果顯示互動式方法能更準確提供符合決策者偏好之方案,而互動式方法中的分段線性觀點理論法(piecewise linear prospect theory method, PLP)所需的互動次數遠少於分析層級程序法(analytic hierarchy process, AHP)。此外,ELECTRE TRI法受限於門檻值之設定,較難以提供符合決策者的理想排序,因此不適合排序方案。目前的MCDM方法仍多以線性為基礎,使用者在選擇決策工具時應留心,且未來發展相關決策方法時可將不同的決策者偏好效用函數納入考量。
Multi-criteria decision making has various applications in real life. We face Multiple Criteria Decision-Making (MCDM) problems every day and their criteria very often conflict with each other. MCDM methods have been developed to support decision makers to enhance decision quality. MCDM methods use various calculation methods to evaluate the rank of alternatives. Yet, little evidence could support that the best alternative chosen by MCDM method is same with the decision maker’s ideal alternative. On the other hand, decision makers may provide inconsistent preferences due to cognitive biases. For example, the prospect theory advocates that decision makers show different risk attitudes according to different reference points.
Therefore, this study aims to examine and compare existing seven seven MCDM methods including TOPSIS, VIKOR, ELECTRE and the piecewise linear prospect theory method (PLP) in terms of effectiveness by using simulation experiements. Controlling variables include number of alternatives, number of criteria, distribution of data set and dominated or non-dominated data set. We also add three different weight combination in these experiments to see how weights affect the MCDM methods. We test four different utility functions. Except the compensatory, non-compensatory and portion of compensatory utility functions, we also use the prospect theory utility function. After that, we compare the MCDM methods’ ranks with decision maker’s ranks by using assumed preference utility functions. The result shows that interactive methods such as PLP and AHP can provide accurate rank to reflect decision makers’ true wishes. Added to this, PLP can use less interactive times than AHP. All of these methods are based on linear utility function, future research might add different utility concept in MCDM methods.
目錄 i
表目錄 iii
圖目錄 iv
第一章 緒論 1
1.1 研究背景、動機與重要性 1
1.2 研究目的與研究範圍 5
1.3 論文結構 6
第二章 文獻回顧 7
2.1 多準則決策 7
2.2 多準則決策工具 8
2.3 決策陷阱 13
2.4 多準則決策輔助工具 17
第三章 研究方法 20
3.1 研究設計 20
3.1.1 實驗數據 22
3.1.2 實驗方法 26
3.2 研究架構 37
第四章 實驗結果與分析 39
第五章 結論 46
5.1. 研究結論 46
5.2. 後續研究建議與研究限制 46
參考文獻 48
附錄A:觀點理論-確定效應實驗 54
附錄B:觀點理論-反射效應實驗 55
附錄C:觀點理論-分離效應實驗 56
附錄D:情境效應(Context effect) 56
附錄E:可視化(visualization) 64
附錄F:逆轉排序(Rank reversal) 65
附錄G:R程式碼-生成實驗數據 67
附錄H:R程式碼-實驗方法排序 70
附錄I:R程式碼-決策者效用函數排序 77
附錄J:R程式碼-小工具 79
參考文獻
中文部分
王小璠(2005),多準則決策分析,滄海書局,台中。
王俊元(2007),應用多準則決策於ERP顧問公司顧問之評選,國立中山大學資訊管理研究所學位論文。
簡禎富(2005),決策分析與管理:全面決策品質提升之架構與方法,雙葉書廊有限公司,台北。
張紹勳(2012),模糊多準則評估法及統計,五南圖書出版股份有限公司,台北。
張光亮、黃宗佑(2011),美國存託憑證與母國股票報酬間之動態關連性─ 極端尾部相依性以及 Kendall’s tau 之研究,經濟研究,47卷2期,頁305-356。
劉信賢(2007),選項特性相容性與妥協效果,臺灣大學商學研究所學位論文。

英文部分
Alves, M. J., & Climaco, J. (2007). A review of interactive methods for multiobjective integer and mixed-integer programming. European Journal of Operational Research, 180(1), 99-115.
Anderson, R. M., & Clemen, R. (2013). Toward an Improved Methodology to Construct and Reconcile Decision Analytic Preference Judgments. Decision Analysis, 10(2), 121-134.
Antoine, K. J., Fischer, G., and Makowski, M. (1997). Multiple criteria land use analysis. Applied Mathematics and Computation, 83(2-3), 195-215.
Ariely, D., & Wallsten, T. S. (1995). Seeking subjective dominance in multidimensional space: An explanation of the asymmetric dominance effect.Organizational Behavior and Human Decision Processes, 63(3), 223-232.
Aronson, E., & Carlsmith, J. M. (1963). Effect of the severity of threat on the devaluation of forbidden behavior. The Journal of Abnormal and Social Psychology, 66(6), 584.
Belton, V., & Gear, T. (1983). On a short-coming of Saaty's method of analytic hierarchies. Omega, 11(3), 228-230.
Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of “n”-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924.
Bouyssou, D., & Marchant, T. (2007). An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories. European Journal of Operational Research, 178(1), 246-276.
Bridgman, P. W. (1922). Dimensional analysis. Yale University Press.
Brock, T. C. (1968). Implications of commodity theory for value change. Psychological foundations of attitudes, 243-275.
Chernev, A. (2004). Extremeness Aversion and Attribute‐Balance Effects in Choice. Journal of Consumer Research, 31(2), 249-263.
Chernev, A. (2005). Context effects without a context: attribute balance as a reason for choice. Journal of Consumer Research, 32(2), 213-223.
Collier, J., and Gregory, A. (1995). Investment appraisal inservice industries: a field study analysis of the U.K. hotels sector. Management accounting research,6(1),33-57.
Dhar, R., & Simonson, I. (2003). The effect of forced choice on choice. Journal of Marketing Research, 40(2), 146-160.
Dhar, R., Nowlis, S. M., & Sherman, S. J. (2000). Trying hard or hardly trying: An analysis of context effects in choice. Journal of Consumer Psychology, 9(4), 189-200.
Eppel, T. (1990). Eliciting and reconciling multiattribute weights. Unpublished doctoral dissertation, University of Southern California, Los Angeles, California.
Farquhar, P. H., & Pratkanis, A. R. (1993). Decision structuring with phantom alternatives. Management Science, 39(10), 1214-1226.
Fischer, G. W., Carmon, Z., Ariely, D., & Zauberman, G. (1999). Goal-based construction of preferences: Task goals and the prominence effect. Management Science, 45(8), 1057-1075.
Gregory, R., Fischhoff, B., & McDaniels, T. (2005). Acceptable input: using decision analysis to guide public policy deliberations. Decision Analysis, 2(1), 4-16.
Highhouse, S. (1996). Context-dependent selection: The effects of decoy and phantom job candidates. Organizational Behavior and Human Decision Processes, 65(1), 68-76.
Highhouse, S., & Johnson, M. A. (1996). Gain/loss asymmetry and riskless choice: Loss aversion in choices among job finalists. Organizational Behavior and Human Decision Processes, 68(3), 225-233.
Hobbs, B. F., & Horn, G. T. (1997). Building public confidence in energy planning: a multimethod MCDM approach to demand-side planning at BC gas. Energy Policy, 25(3), 357-375.
Huang, J. J. (2012). Further explanations for context effects: a perspective of ideal and reference points. Quality & Quantity, 46(1), 281-290.
Huber, J., Payne, J. W., & Puto, C. (1982). Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. Journal of Consumer Research, 9(1), 90-98.
Hwang, C. L., & Yoon, K. (1981). Lectu re Notes in Economics and Mathematical Systems. Constraints, 8(156), 1980.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-291.
Kivetz, R., Netzer, O., & Srinivasan, V. (2004). Alternative models for capturing the compromise effect. Journal of marketing research, 41(3), 237-257.
Lahdelma, R. (2003). Testing the efficiency of two pairwise comparison methods in discrete multiple criteria problems. European Journal of Operational Research, 145, 496-508.
Leskinen, P., & Kangas, J. (2005). Rank reversals in multi-criteria decision analysis with statistical modelling of ratio-scale pairwise comparisons. Journal of the Operational Research Society, 56(7), 855-861.
Lotov, A. V., & Miettinen, K. (2008). Visualizing the Pareto Frontier. In Multiobjective Optimization: Interactive And Evolutionary Approaches , 213-243.
Luce, R. D. (1977). The choice axiom after twenty years. Journal of Mathematical Psychology, 15(3), 215-233.
Manas, K. C. (2010). “Book Series: Contributions to Conflict Management, Peace Economics and Development-Volume 15: Conflict, Complexity and Mathematical Social Science”, Emerald Group Publishing Limited, Bingley.
McQuaid, M. J., Ong, T. H., Chen, H., & Nunamaker Jr, J. F. (1999). Multidimensional scaling for group memory visualization. Decision support systems, 27(1), 163-176.
Miller, D. W., & Starr, M. K. (1969). Executive Decisions and Operations Research. YPrenttce-Hall. Inc., Englewood Cliffs, NJ, USA.
Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5-21.
Pareto, V.(1909). Manuel d’Economie Politique, Giard, Paris.
Payne, J. W., Bettman, J. R., & Schkade, D. A. (1999). Measuring Constructed Preferences: Towards a Building Code. Journal of Risk and Uncertainty, 19(1-3), 1-3.
R. Ducan Luce. (1959). Individual Choice Behavior a Theoretical Analysis. John Wiley and sons.
Ratneshwar, S., Shocker, A. D., & Stewart, D. W. (1987). Toward understanding the attraction effect: The implications of product stimulus meaningfulness and familiarity. Journal of Consumer Research, 13(4), 520-533.
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.
Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation . McGraw-Hill, N.Y.
Sattath, S. (1989). The maximization principle and constructive decision theory.unpublished dissertation, Department of Psychology, Hebrew University, Jerusalem, 91905.
Seidl, C., & Traub, S. (1996). Rational choice and the relevance of irrelevant alternatives. Center for Economic Research, Tilburg University.
Shafir, E. (1993). Choosing versus rejecting: Why some options are both better and worse than others. Memory & Cognition, 21(4), 546-556.
Sheng, S., Parker, A. M., & Nakamoto, K. (2005). Understanding the mechanism and determinants of compromise effects. Psychology & Marketing, 22(7), 591-609.
Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7), 801-813.
Simonson, I. (1989). Choice based on reasons: The case of attraction and compromise effects. Journal of consumer research, 16(2), 158-174.
Simonson, I., & Tversky, A. (1992). Choice in context: tradeoff contrast and extremeness aversion. Journal of Marketing Research, 29(3), 281-295.
Sinha Bikas, K, & Sinha, Bimal K. (2002). On Some Aspects of MCDM with Environmental Applications: Technical Report, Department of Mathematics and Statistics, UMBC.
Stewart, T., Bandte, O., Braun, H., Chakraborti, N., Ehrgott, M., Göbelt, M., ... & Di Stefano, D. (2008). Real-world applications of multiobjective optimization. In Multiobjective Optimization, 285-327. Springer Berlin Heidelberg.
Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic Behavior & Organization, 1(1), 39-60.
Thorndike, E. L. (1920). A constant error in psychological ratings. Journal of applied psychology, 4(1), 25-29.
Triantaphyllou, E., & Mann, S. H. (1989). An examination of the effectiveness of multi-dimensional decision-making methods: A decision-making paradox. Decision Support Systems, 5(3), 303-312.
Trueblood, J. S. (2012). Multialternative context effects obtained using an inference task. Psychonomic bulletin & review, 19(5), 962-968.
Tversky, A., & Simonson, I. (1993). Context-dependent preferences.Management science, 39(10), 1179-1189.
Tversky, A., Kahneman, D., & Choice, R. (1981). The framing of decisions and the psychology of choice. Science, 211, 453-458.
Tversky, A., Sattath, S., & Slovic, P. (1988). Contingent weighting in judgment and choice. Psychological review, 95(3), 371.
Walster, E., & Festinger, L. (1964). Decisions among imperfect alternatives.Conflict, Decision and Dissonance.
Walster, E. & Festinger, L. (1964). Decisions among Imperfect Alternatives, Conflict, Decision and Dissonance, Stanford University Press, Stanford, CA.
Wedell, D. H. (1991). Distinguishing among models of contextually induced preference reversals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(4), 767.
Wedell, D. H., & Pettibone, J. C. (1999). Preference and the contextual basis of ideals in judgment and choice. Journal of Experimental Psychology: General,128(3), 346.
Yu, P. L. (1973). A class of solutions for group decision problems. Management Science, 19(8), 936-946.
Zeleny, M. (1982). Multiple criteria decision making (Vol. 25). J. L. Cochrane (Ed.). New York: McGraw-Hill.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊