跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮冠芙
研究生(外文):Kuan-Fu Feng
論文名稱:時間相依走時層析成像反演之探討:以2013年瑞穗地震(ML 6.4)為例
論文名稱(外文):Investigating the uncertainty of time-dependent seismic velocity changes using travel time tomography: a case study of the ML 6.4 2013 Rueisuei earthquake, Taiwan
指導教授:吳逸民吳逸民引用關係
指導教授(外文):Yih-Min Wu
口試委員:趙里李憲忠郭陳澔
口試委員(外文):Li ZhaoShiann-Jong LeeHao Kuo-Chen
口試日期:2016-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:69
中文關鍵詞:彈性回跳地震波速度變化時間相依震波層析成像走時層析成像瑞穗地震
外文關鍵詞:elastic reboundtemporal change of seismic velocitytime-dependent tomographytravel time tomographyRueisuei earthquake
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中-大型地震前後地殼速度變化可以透過地震波走時層析成像法解析,然而,兩個時期不相等的震源-測站之波線路徑在空間中的分佈會使層析成像的速度變化結果產生偏差。為了測試由於地震波線分佈不相等對於解析速度構造變化造成的偏差效應,本研究將地震前與地震後兩時期的走時資料,各別考量相對應地震對的地震位置、震央距差值以及相對應波線對的波線方位角差值,挑選出地震前後兩時期相似路徑的地震波線,並將走時資料依空間分佈分為三種:(1)不相等波線、(2)相等波線不包含測站修正以及(3)相等波線包含測站修正,進行一系列的測試,研究走時層析成像在時間-空間上的解析情形,檢驗不相等的地震波線空間分佈如何影響三維速度構造。並以2013年10月31日發生於臺灣東部芮氏規模6.4的瑞穗地震,檢驗使用震波走時層析成像法解析地殼速度變化的可行性。透過棋盤格測試、解析能力測試以及反演程度差異的確認,解析出速度變化在空間中的可信區域。
速度變化的結果顯示,P波速度在震源區域有約2%正值速度變化出現在深度10公里處,往下可延伸至15公里包圍震源並伴隨著量值增加至約5%。在深度20公里處,正值速度變化以北北東-南南西的趨勢集中在距離震源位置大約10-30公里的北北東區域,而此正值區域包圍斷層主要滑移區的周圍。此外,在深度10公里處有約3-8%負值速度變化出現在餘震集中之區域的東北邊。大多數餘震發生在正值與負值速度變化的邊界。S波速度在深度10公里處,有負值速度變化(~5-10%)出現在震源位置的西側及東北側,而位於震源位置西側的負值速度變化向下延伸至15公里伴隨著量值下降至約3%。此外,在震源深度的正值速度變化(5-10%)出現在距離震源大約10-30公里的北北東區域,與震源主要破裂區域符合,而此正值速度變化向下延伸、向北集中在離震源位置約30公里處。速度變化的結果顯示,在主震區域的地震P波和S波速度沿著斷層破裂方向變快、大多數餘震集中在速度變化梯度大的區域,而在斷層破裂終止、距離震源位置約30公里處,速度在約深度12-15公里以上的區域變慢、20公里區域變快。我們認為這樣的速度變化是由於地震前後震源區域及其周圍應力調整、裂隙密度改變以及斷層下盤地塊的彈性回跳所致。
值得注意的是不單只是地震波線在空間上的分佈會影響速度構造反演的結果,走時資料在挑波時的權重也會造成解析速度變化的偏差。然而,當我們考慮了兩時期的地震波線在空間上具有相同分佈位置,而各時期走時資料具有各自反演速度構造的能力,並且兩時期走時資料解析速度構造的能力相當,地震走時層析成像法即可用以解析三維空間速度構造隨時間的變化。


Using seismic travel time tomographic method, changes of seismic wave velocity in crust associated with moderate-to-large sized earthquakes could potentially be resolved with the tomographic images before and after the occurrence of an earthquake. However, unequal ray distribution during two time periods can also cause the artifacts in resulting of temporal seismic wave velocity changes. Thus, to selected the two travel time datasets with equal ray distribution, we considered the location distance of each event pair, the differences of epicentral distance and the gap of azimuths for each station-source pair. We then conducted a series of tests to investigate the temporal-spatial resolution of tomographic results, especially for examining how the unequal ray distributions can influence the three-dimensional VP and VS crustal structures. We demonstrated the feasibility of time-dependent tomographic method by applying it to image the velocity changes before and after an earthquake occurred on 2013 October 31, in Rueisuei in eastern Taiwan (ML = 6.4), which was well recorded by the Central Weather Bureau Seismic Network (CWBSN) stations, Taiwan Strong Motion Instrumental Program (TSMIP) and Broadband Array in Taiwan for Seismology (BATS) stations. In our tomographic results, quite different patterns were found between the results of equal and unequal type of ray distributions. Through investigating the checkerboard resolution tests, resolution maps and discrepancy between the checkerboard-like models within two time periods, the reliable region were revealed.
In our results, in the source region of the 2013 Rueisuei earthquake, a positive velocity changes (the model difference, ΔM) in VP (~2-10%) appeared surrounding the source location at 15 km depth. This anomaly of velocity changes downwardly extended to ~10-30 km away in the northern region of source at 20 km depth with a tendency in the NNE-SSW direction, which rupture of the fault plane propagated. In the north-eastern region of aftershocks, a negative ΔM (~3-8%) appeared in the north-eastern region at 10 km depth and downwardly stretched to 15 km with decreased amplitude (~1-2%). For ΔM in VS, two negative ΔM (~5-10%) appeared in the north-eastern region and the west side of the source location, and these anomalies downwardly extended to 15 km depth with decreasing in intensity. In the region where most aftershocks located, a strong positive anomaly (~5-10%) was shown with the same trending in the NNE-SSW direction just located at the major slip area. This anomaly downwardly stretched and further localized in the north where there was ~30 km away from the source location at 20 km depth. We suggested that the observed ΔM in the source region were mainly caused by increasing in stress due to the rupture of the mainshock and elastic rebounded of crust.
It is worth noting that not only will the distribution of rays affect the results of time-dependent travel time tomographic inversion but also different weighting value of the arrival-pickings from travel time data in the pre-seismic and the post-seismic periods bias the structures in tomographic inversion procedure. When the comparable resolution before and after a moderated-to-large sized earthquake can be achieved with identical ray distribution, the travel time tomographic method is then able to resolve the seismic wave velocity changes.


論文口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Table of Contents vii
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Data and analysis procedure 5
2.1 The 2013 Rueisuei earthquake 5
2.2 Data 5
2.3 Selection of ray distribution 6
2.4 Flowchart analysis 11
Chapter 3 Method 14
3.1 Determination of earthquake location 15
3.2 Travel time tomographic inversion 16
3.3 Parameter setting 17
3.4 Model difference 18
Chapter 4 Resolution verification 21
4.1 Checkerboard resolution tests 21
4.2 Discrepancy of checkerboard-like structures 22
4.3 Summary 26
Chapter 5 Results and discussion 31
5.1 Model difference in VP and VS 31
5.2 Discussion 34
Chapter 6 Conclusions 40
References 42
Appendices 49
A. Initial 3-D velocity models for tomographic inversion 49
B. Testing for different value of smoothing and damping factors 53
C. Time-expending tomographic inversion 56
D. Tomographic inversion with an initial 1-D velocity model and equal-type travel time data 63
E. Synthetic test considering an initial 3-D velocity model and equal-type travel time data 65
F. Testing the influence of weighting value of arrival-pickings in travel time data on tomography with the checkerboard-like structure considering an initial 3-D velocity model and equal-type travel time data 68



[1]Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., & Larose, E. (2008). Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. Science, 321(5895), 1478-1481.
[2]Boore, D. M., Lindh, A. G., McEvilly, T. V., & Tolmachoff, W. W. (1975). A search for travel-time changes associated with the Parkfield, California, earthquake of 1966. Bulletin of the Seismological Society of America, 65(5), 1407-1418.
[3]Chao, K., & Peng, Z. (2009). Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22 M6.4 Chia-Yi, Taiwan earthquake. Geophysical Journal International, 179(3), 1800-1816.
[4]Chen, C. H., Wang, W. H., & Teng, T. L. (2001). 3D velocity structure around the source area of the 1999 Chi-Chi, Taiwan, earthquake: before and after the mainshock. Bulletin of the Seismological Society of America, 91(5), 1013-1027.
[5]Chen, K. H., Furumura, T., Rubinstein, J., & Rau, R. J. (2011). Observations of changes in waveform character induced by the 1999 Mw7. 6 Chi‐Chi earthquake. Geophysical Research Letters, 38(23).
[6]Cheng, W. B. (2000). Three-dimensional crustal structure around the source area of the 1999 Chi-Chi earthquake in Taiwan and its relation to the aftershock locations. Terrestrial, Atmospheric and Oceanic Sciences, 11(3), 643-660.
[7]Foulger, G. R., Grant, C. C., Ross, A., & Julian, B. R. (1997). Industrially induced changes in Earth structure at The Geysers geothermal area, California. Geophysical research letters, 24(2), 135-137.
[8]Frohlich, C. (1979). An efficient method for joint hypocenter determination for large groups of earthquakes. Computers & Geosciences, 5(3), 387-389.
[9]Gunasekera, R. C., Foulger, G. R., & Julian, B. R. (2003). Reservoir depletion at The Geysers geothermal area, California, shown by four‐dimensional seismic tomography. Journal of Geophysical Research: Solid Earth, 108(B3).
[10]Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
[11]Julian, B. R., & Foulger, G. R. (2010). Time-dependent seismic tomography. Geophysical Journal International, 182(3), 1327-1338.
[12]Kanamori, H., & Fuis, G. (1976). Variation of P-wave velocity before and after the Galway Lake earthquake (ML= 5.2) and the Goat Mountain earthquakes (ML= 4.7, 4.7), 1975, in the Mojave desert, California. Bulletin of the Seismological Society of America, 66(6), 2017-2037.
[13]Kao, H., Jian, P. R., Ma, K. F., Huang, B. S., & Liu, C. C. (1998). Moment‐tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision. Geophysical Research Letters, 25(19), 3619-3622.
[14]Kasatkina, E., Koulakov, I., West, M., & Izbekov, P. (2014). Seismic structure changes beneath Redoubt Volcano during the 2009 eruption inferred from local earthquake tomography. Journal of Geophysical Research: Solid Earth, 119(6), 4938-4954.
[15]Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., Huang, B. S., Yeh, Y. H., & Shen, P. (2005). Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophysical Journal International, 162(1), 204-220.
[16]Koketsu, K., & Sekine, S. (1998). Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Geophysical Journal International, 132(2), 339-346.
[17]Koulakov, I., Gladkov, V., Khrepy, S. E., Al‐Arifi, N., & Fathi, I. H. (2016). Can repeated passive source travel time tomography reveal weak velocity changes? Implications for the Tohoku region in Japan. Journal of Geophysical Research: Solid Earth.
[18]Koulakov, I., Gordeev, E. I., Dobretsov, N. L., Vernikovsky, V. A., Senyukov, S., Jakovlev, A., & Jaxybulatov, K. (2013). Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography. Journal of Volcanology and Geothermal Research, 263, 75-91.
[19]Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth (1978–2012), 117(B6).
[20]Lee, S. J., Huang, H. H., Shyu, J. B. H., Yeh, T. Y., & Lin, T. C. (2014). Numerical earthquake model of the 31 October 2013 Ruisui, Taiwan, earthquake: Source rupture process and seismic wave propagation. Journal of Asian Earth Sciences, 96, 374-385.
[21]Lees, J. M., & Nicholson, C. (1993). Three-dimensional tomography of the 1992 southern California earthquake sequence: Constraints on dynamic earthquake rupture? Geology, 21(5), 387-390.
[22]Liang, C., Song, X., & Huang, J. (2004). Tomographic inversion of Pn travel times in China. Journal of Geophysical Research: Solid Earth (1978–2012), 109(B11).
[23]Ma, K. F., Wang, J. H., & Zhao, D. (1996). Three-Dimensional Seismic Velocity Structure of the Crust and Uppermost Mantle beneath Taiwan. Journal of Physics of the Earth, 44(2), 85-105.
[24]Nishimura, T., Uchida, N., Sato, H., Ohtake, M., Tanaka, S., & Hamaguchi, H. (2000). Temporal changes of the crustal structure associated with the M6. 1 earthquake on September 3, 1998, and the volcanic activity of Mount Iwate, Japan. Geophys. Res. Lett, 27(2), 269-272.
[25]Nur, A. (1971). Effects of stress on velocity anisotropy in rocks with cracks. Journal of Geophysical Research, 76(8), 2022-2034.
[26]O''Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412-5426.
[27]Patanè, D., Barberi, G., Cocina, O., De Gori, P., & Chiarabba, C. (2006). Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science, 313(5788), 821-823.
[28]Peng, Z., & Ben-Zion, Y. (2006). Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the north Anatolian fault and strong ground motion. Pure and Applied Geophysics, 163(2-3), 567-600.
[29]Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. Journal of Geophysical Research: Solid Earth (1978–2012), 89(B7), 5719-5731.
[30]Rau, R. J., & Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Planetary Science Letters, 133(3), 517-532.
[31]Schaff, D. P., & Beroza, G. C. (2004). Coseismic and postseismic velocity changes measured by repeating earthquakes. Journal of Geophysical Research: Solid Earth, 109(B10).
[32]Shin, T. C. (1992). Some implications of Taiwan tectonic features from the data collected by the Central Weather Bureau Seismic Network. Meteorol. Bull, 38, 23-48. (in Chinese)
[33]Shin, T. C. (1993, December). Progress summary of the Taiwan strong motion instrumentation program. In Symp. on the Taiwan strong motion instrumentation program (Vol. 1, No. 10). (in Chinese)
[34]Shin, T. C., Tsai, Y. B., Yeh, Y. T., Liu, C. C., Wu, Y. M., (2003). Strong motion instrumentation programs in Taiwan, in Handbook of Earthquake and Engineering Seismology, W. H. K. Lee, H. Kanamori and P. C. Jennings (Editors), Academic Press, New York, 1057–1602.
[35]Sibson, R. H., Moore, J. M. M., & Rankin, A. H. (1975). Seismic pumping—a hydrothermal fluid transport mechanism. Journal of the Geological Society,131(6), 653-659.
[36]Soldati, G., Zaccarelli, L., Faenza, L., & Michelini, A. (2015). Monitoring of crustal seismic velocity variations in the L''Aquila fault zone inferred from noise cross-correlation. Geophysical Journal International, 202(1), 604-611.
[37]Taira, T. A., Brenguier, F., & Kong, Q. (2015). Ambient noise‐based monitoring of seismic velocity changes associated with the 2014 Mw 6.0 South Napa earthquake. Geophysical Research Letters, 42(17), 6997-7004.
[38]Um, J., & Thurber, C. (1987). A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 77(3), 972-986.
[39]Vidale, J. E., & Li, Y. G. (2003). Damage to the shallow Landers fault from the nearby Hector Mine earthquake. Nature, 421(6922), 524-526.
[40]Winkler, K., & Nur, A. (1979). Pore fluids and seismic attenuation in rocks. Geophysical Research Letters, 6(1), 1-4.
[41]Wu, C., Delorey, A., Brenguier, F., Hadziioannou, C., Daub, E. G., & Johnson, P. (2016). Constraining depth range of S‐wave velocity decrease after large earthquakes near Parkfield, California. Geophysical Research Letters.
[42]Wu, Y. M., Chang, C. H., Hsiao, N. C., & Wu, F. T. (2003). Relocation of the 1998 Rueyli, Taiwan, earthquake sequence using three-dimensions velocity structure with stations corrections. Terrestrial Atmospheric and Oceanic Sciences, 14(4), 421-430.
[43]Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B8).
[44]Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., & Nakamura, M. (2008). A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471-1481.
[45]Wu, Y. M., Shyu, J. B. H., Chang, C. H., Zhao, L., Nakamura, M., & Hsu, S. K. (2009). Improved seismic tomography offshore northeastern Taiwan: implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International, 178(2), 1042-1054.
[46]Xu, Z. J., & Song, X. (2009). Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation. Proceedings of the National Academy of Sciences, 106(34), 14207-14212.
[47]Yu, T. C., & Hung, S. H. (2012). Temporal changes of seismic velocity associated with the 2006 Mw 6.1 Taitung earthquake in an arc‐continent collision suture zone. Geophysical Research Letters, 39(12).
[48]Yu, W. C., Song, T. R. A., & Silver, P. G. (2013). Temporal velocity changes in the crust associated with the great Sumatra earthquakes. Bulletin of the Seismological Society of America, 103(5), 2797-2809.
[49]Zelt, C. A. (1998). Lateral velocity resolution from three-dimensional seismic refraction data. Geophysical Journal International, 135(3), 1101-1112.
[50]Zhao, D., & Kanamori, H. (1995). The 1994 Northridge earthquake: 3‐D crustal structure in the rupture zone and its relation to the aftershock locations and mechanisms. Geophysical research letters, 22(7), 763-766.
[51]Zhao, D., Kanamori, H., Negishi, H., & Wiens, D. (1996). Tomography of the source area of the 1995 Kobe earthquake: evidence for fluids at the hypocenter? Science, 274(5294), 1891-1894.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top