跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 22:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃妙蟬
研究生(外文):Miao-Chan Huang
論文名稱:漆黃素於大白鼠之藥物動力學及膽汁排泄
論文名稱(外文):Pharmacokinetics and Biliary Excretion of Fisetin in Rats
指導教授:蔡東湖蔡東湖引用關係
指導教授(外文):Tung-Hu Tsai
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:傳統醫藥研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:類黃酮漆黃素膽汁排泄藥物動力學環孢靈素P-醣蛋白glucruonidessulfates
外文關鍵詞:flavonoidsfisetinbile excretionpharmacokineticscyclosporineP-glycoproteinglucruonidessulfates
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
漆黃素 (fisetin; 3, 3’, 4’, 7-tetrahydroxyflavone) 是一種具有多重生物活性且廣泛地存在於植物體中的黃酮醇 (flavonol)。在flavonol中,如槲皮素 (quercetin; 3, 3’, 4’, 5, 7-pentahydroxyflavone) 及其glucuronides會被分泌至膽汁進行膽汁排泄,甚至近一步有腸肝循環的特性。化學結構與quercetin相似的fisetin在許多物理、化學及藥理特性上都與quercetin接近。因此,從結構-藥物動力學關係來看,本實驗假設fisetin及其代謝物可能會被分泌至膽汁進行膽汁排泄。為了證明這個假說,實驗中建立了一套高效液相層析結合光二極體陣列式偵測器 (high-performance liquid chromatography method coupled to photo-diode array detector, HPLC-PDA) 之分析方法,以此偵測大鼠血液及膽汁中的fisetin,探討fisetin的藥物動力學及膽汁排泄。選用Sprague-Dawley品種之大鼠進行藥物動力學實驗,透過靜脈注射的路徑將fisetin (30 mg/kg) 進行投予。同時,本實驗也更進一步地探討fisetin之膽汁排泄的可能機轉,如P-醣蛋白的轉運,在給予fisetin (30 mg/kg) 前先投予P-醣蛋白調控劑環孢靈素 (cyclosporine, 20 mg/kg, i.v.)。結果顯示fisetin、其glcururonides及sulfates皆會經過膽汁排泄,而fisetin sulfates不僅是fisetin在靜脈給予下最主要的代謝物,也是膽汁中最多的代謝物。先行投予cyclosporine後,fisetin、其glucuronides及sulfates之血中AUC皆上升,但fisetin與其glucuronides於膽汁中的AUC降低,代表fisetin、其glcururonides及sulfates都是P-醣蛋白的受質,且P-醣蛋白與fisetin、其glcururonides及sulfates被運輸進入膽汁有關。綜合以上結果,本研究首度探討了fisetin、其glcururonides及sulfates的膽汁排泄,並進一步地確認P-醣蛋白參與fisetin、其glcururonides及sulfates進入膽汁排泄的機轉,也發現了除了P-醣蛋白之外,可能還有其他參與fisetin sulfates膽汁排泄之調控機轉。
Fisetin (3, 3’, 4’, 7-tetrahydroxyflavone) is a flavonol possessing multiple bioactivities and widely presents in plants. In the flavonol subgroup, such as quercetin and its glucuronides are well known to go through biliary excretion and enteroheptic circulation. With the resemblance to quercetin (3, 3’, 4’, 5, 7-pentahydroxyflavone) on chemical structure, fisetin shared similar physical, chemical and pharmacological properties with quercetin. In the concern of structure-pharmacokinetic relationships between fisetin and quercetin, the hypothesis is that fisetin and its conjugates would partly being secreted to bile and would undergo biliary excretion. To investigate these hypothesis, a high-performance liquid chromatography method coupled to photo-diode array detector (HPLC-PDA) was developed and applied to assay of fisetin in rat plasma and bile to determine the pharmacokinetics and biliary excretion profile of fisetin. The pharmacokinetic study was conducted on male Spraque-Dawley rats after administration of fisetin (30mg/kg, i.v.). Meanwhile, further investigation of the possible transportation mechanism such as P-glycoprotein (P-gp) which may involve in the biliary excretion of fisetin was conducted. A P-gp inhibitor, cyclosporine (20 mg/kg, i.v.) was pretreated prior to fisetin administration (30 mg/kg, i.v.). The results showed that fisetin, its glucuronides and sulfates all undergo biliary excretion, especially the fisetin sulfates conjugation was the major metabolite. When pretreated with cyclosporine, the area under concentration versus time curves (AUC) of fisetin, its glucuronides and sulfates increased in plasma, but the AUC of fisetin and its glucuronides decreased in bile, which indicates that fisetin, its glucuronides and sulfates maybe the substrates of P-gp and indicates that P-gp is related to the transportation of fisetin, its glucuronides and sulfates into bile. In conclusion, this study first explored the biliary excretion profile of fisetin, its glucuronides and sulfates, and further confirmed the involvement of P-gp in the mechanism of biliary excretion of fisetin, its glucuronides and sulfates. However, the biliary excretion of fisetin sulfates might be co-mediated by other mechanism.
目錄

目錄 i
表目錄 iii
圖目錄 iv
中文摘要 v
Abstract vi
第一章 緒論 1
 第一節 漆黃素 (Fisetin) 1
   一、 研究背景 1
   二、 相關藥理學研究 2
   三、 相關藥物動力學研究 3
 第二節 藥物動力學 4
   一、 概論 4
   二、 腔室模式 (compartment model) 4
   三、 藥物動力學參數-藥物濃度曲線下面積 (Area under concentration versus time curve, AUC) 5
   四、 藥物動力學參數-半衰期 (Half-life, t1/2) 6
   五、 藥物動力學參數-擬似分布體積 (apparent volume of distribution, Vd) 7
   六、 藥物動力學參數-清除率 (Clearance, Cl) 7
 第三節 藥物代謝 8
   一、 第一相代謝 (Phase I metabolism) 8
   二、 第二相代謝 (Phase II metabolism) 8
   三、 第三相膜轉運 (Phase III membrane transportation) 10
   四、 Flavonoids的代謝 (Metabolism of flavonoids) 10
 第四節 膽汁排泄 (Biliary excretion) 12
 第五節 P-醣蛋白 (P-glycoprotein, P-gp) 14
   一、 簡介 14
   二、 P-gp的結構與分布 14
   三、 P-gp對藥物動力學的影響 15
   四、 P-gp的調控劑 - 環孢靈素 (cyclosporine) 15
第二章 研究動機 16
第三章 實驗材料與方法 17
 第一節 實驗材料與化學試劑 17
   一、 試藥與試劑 17
   二、 實驗儀器設備與手術器械 18
   三、 實驗動物 20
 第二節 Fisetin於大鼠血液及膽汁之定量分析 21
   一、 高效液相層析儀結合光二極體偵測器 (HPLC-PDA) 之分析條件 21
   二、 血漿及膽汁之檢量線檢品及安定性試驗檢品製備 21
   三、 生物檢品之前處理 22
   四、 分析方法確效 24
 第三節 Fisetin於大鼠之藥物動力學 27
   一、 動物手術程序 27
   二、 靜脈給藥與血液、膽汁採集時間 27
 第四節 Fisetin之代謝物鑑定 29
 第五節 應用、數值統計與分析軟體 29
第四章 實驗結果 30
 第一節 Fisetin之分析方法確效 30
   一、 分析方法對大鼠血漿及膽汁中fisetin之選擇性 30
   二、 分析方法之線性定量範圍 30
   三、 生物檢品之萃取回收率 30
   四、 分析方法之同日、間日精密度及準確度 31
   五、 生物檢品之安定性試驗 31
 第二節 Fisetin於大鼠之藥物動力學 32
   一、 Fisetin於大鼠之藥物動力學-腔室模式 32
   二、 Fisetin於大鼠之藥物動力學-控制組 32
  三、 Fisetin於大鼠之藥物動力學-併用Cyclosporin A組 33
 第三節 Fisetin之代謝物鑑定 34
第五章 實驗討論 35
 第一節 Fisetin之分析條件優化 35
 第二節 Fisetin之分析方法確效 37
 第三節 生物檢品前處理 39
 第四節 Fisetin於大鼠血漿及膽汁之藥物動力學 41
 第五節 併用Cyclosporin A對fisetin藥物動力學的影響:P-gp在fisetin之膽汁排泄所扮演的角色 43
 第六節  Fisetin之代謝物鑑定 45
第六章 結論 46
參考文獻 47


表目錄

Table 1.  Linearity of fisetin in rat plasma and bile 52
Table 2.  Recovery of fisetin in rat plasma and bile 53
Table 3.  Accuracy (bias %) and precision (R.S.D.%) of fisetin in rat plasma and bile 54
Table 4.  Stability of fisetin in rat plasma and bile 55
Table 5.  Pharmacokinetic parameters of fisetin (30 mg/kg, i.v.) in rat plasma and bile 56
Table 6.  Biotransformation rate of fisetin (30 mg/kg, i.v.) in rat 57


圖目錄

Figure 1. Chemical structure of (a) fisetin (3, 3', 4', 7-tetrahydorxyflavone) and (b) quercetin (3, 3', 4', 5, 7-pentahydorxyflavone) 58
Figure 2. Hepatic uptake from sinusoid and efflux to bile canaliculi via transporters 13
Figure 3. Typical chromatograms of (a) drug-free plasma, (b) drug-free plasma spiked standards of fisetin (5 μg/mL) and quercetin (IS, 20 μg/mL), and (c) plasma sampling at 5 min after administration of fisetin (30 mg/kg, i.v.) 59
Figure 4. Typical chromatograms of (a) drug-free bile, (b) drug-free bile spiked standards of fisetin (5 μg/mL) and quercetin (IS, 20 μg/mL), (c) bile sampling during 0 - 10 min after administration of fisetin (30 mg/kg, i.v.) 60
Figure 5. Typical chromatograms of (a) plasma sampling at 5 min after administration of fisetin (30 mg/kg, i.v.), (b) plasma sampling at 5 min after administration of fisetin (30 mg/kg, i.v.) and incubated with β-glucuronidase and spiked quercetin (IS; 20 μg/mL), and (c) plasma sampling at 5 min after administration of fisetin (30 mg/kg, i.v.) and incubated with sulfatase and spiked quercetin (IS; 20 μg/mL) 61
Figure 6. Typical chromatograms of (a) bile sampling at 5 min after administration of fisetin (30 mg/kg, i.v.), (b) bile sampling at 5 min after administration of fisetin (30 mg/kg, i.v.) and incubated with β-glucuronidase and spiked quercetin (IS; 20 μg/mL), and (c) bile sampling at 5 min after administration of fisetin (30 mg/kg, i.v.) and incubated with sulfatase and spiked quercetin (IS; 20 μg/mL) 62
Figure 7. Plasma concentration-time profile of fisetin (30 mg/kg, i.v.) free form (), treated with β-glucuronidase () and sulfatase () after administration in rat 63
Figure 8. Bile concentration-time profile of fisetin (30 mg/kg, i.v.) free form (), treated with β-glucuronidase () and sulfatase () after administration in rat 64
Figure 9. UV-visible spectrum of (a) fisetin (b) unidentified metabolite of fisetin within 190 – 600 nm 65
Figure 10. (a) Full-scan mass spectrum and (b) MSMS scan spectrum of unidentified metabolite of fisetin 66
Figure 11. Speculated structures of the unidentified metabolite of fisetin 67
Figure 12. Proposed metabolic pathway of fisetin, its glucronides, sulfates, possible methyl metabolite and their distribution into plasma and bile 68

[1] Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 1830 (2013) 3670-95.
[2] Du HQ. [Isolation and identification of fisetin in Cotinus coggygria]. Zhong Yao Tong Bao. 8 (1983) 29-30.
[3] Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry. Biochim Biophys Acta. 1721 (2005) 174-84.
[4] Ratty AK, Das NP. Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship. Biochem Med Metab Biol. 39 (1988) 69-79.
[5] Bellik Y, Boukraa L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 18 (2012) 322-53.
[6] Lian T-W, Wang L, Lo Y-H, Huang I-J, Wu M-J. Fisetin, morin and myricetin attenuate CD36 expression and oxLDL uptake in U937-derived macrophages. Biochim Biophys Acta. 1781 (2008) 601-9.
[7] Sagara Y, Vanhnasy J, Maher P. Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation. J Neurochem. 90 (2004) 1144-55.
[8] Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet. 20 (2011) 261-70.
[9] Maher P. Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr. 4 (2009) 297-307.
[10] Nabavi SF, Braidy N, Habtemariam S, Sureda A, Manayi A, Nabavi SM. Neuroprotective effects of Fisetin in Alzheimer's and Parkinson's diseases: from chemistry to medicine. Curr Top Med Chem. 16 (2016) 1910-5.
[11] Ravichandran N, Suresh G, Ramesh B, Siva GV. Fisetin, a novel flavonol attenuates benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Food Chem Toxicol. 49 (2011) 1141-7.
[12] Khan N, Asim M, Afaq F, Zaid MA, Mukhtar H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res. 68 (2008) 8555-63.
[13] Smith ML, Murphy K, Doucette CD, Greenshields AL, Hoskin DW. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells. J Cell Biochem. (2016).
[14] Klimaszewska-Wisniewska A, Halas-Wisniewska M, Tadrowski T, Gagat M, Grzanka D, Grzanka A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int. 16 (2016) 10.
[15] Shia CS, Tsai SY, Kou SC, Hou YC, Chao PDL. Metabolism and pharmacokinetics of 3,3',4',7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites. J Agric Food Chem. 57 (2009) 83-9.
[16] Touil YS, Auzeil N, Boulinguez F, Saighi H, Regazzetti A, Scherman D, et al. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. Biochem Pharmacol. 82 (2011) 1731-9.
[17] Ragelle H, Crauste-Manciet S, Seguin J, Brossard D, Scherman D, Arnaud P, et al. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int J Pharm. 427 (2012) 452-9.
[18] Seguin J, Brulle L, Boyer R, Lu YM, Ramos Romano M, Touil YS, et al. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm. 444 (2013) 146-54.
[19] Wagner JG. Pharmacokinetics for the pharmaceutical scientist: CRC Press; 1993.
[20] Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm. 6 (1978) 547-58.
[21] Gideon S. Estimating the dimension of a model. Ann Stat. 6 (1978) 461-4.
[22] Mignat C, Wille U, Ziegler A. Affinity profiles of morphine, codeine, dihydrocodeine and their glucuronides at opioid receptor subtypes. Life Sci. 56 (1995) 793-9.
[23] Hand CW, Blunnie WP, Claffey LP, McShane AJ, McQuay HJ, Moore RA. Potential analgesic contribution from morphine-6-glucuronide in CSF. Lancet. 2 (1987) 1207-8.
[24] Dutton G. The biosynthesis of glucuronides in Glucuronic Acid. Academic Press, New York. (1966) 185-299.
[25] Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenet Genomics. 7 (1997) 255-69.
[26] Falany CN, Chowdhury JR, Chowdhury NR, Tephly TR. Steroid 3- and 17-OH UDP-glucuronosyltransferase activities in rat and rabbit liver microsomes. Drug Metab Dispos. 11 (1983) 426-32.
[27] Layne D. New metabolic conjugates of steroids. Metabolic conjugation and metabolic hydrolysis: Academic Press New York; 1970. p. 21-52.
[28] Kensler TW, Egner PA, Davidson NE, Roebuck BD, Pikul A, Groopman JD. Modulation of aflatoxin metabolism, aflatoxin-N7-guanine formation, and hepatic tumorigenesis in rats fed ethoxyquin: role of induction of glutathione S-transferases. Cancer Res. 46 (1986) 3924-31.
[29] Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 130 (2000) 2073S-85S.
[30] Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 458 (1999) 224-30.
[31] Lin LC, Pai YF, Tsai TH. Isolation of Luteolin and Luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and Their Pharmacokinetics in Rats. J Agric Food Chem. 63 (2015) 7700-6.
[32] Chen Z, Chen M, Pan H, Sun S, Li L, Zeng S, et al. Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metab Dispos. 39 (2011) 667-74.
[33] Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 78 (2005) 260-77.
[34] Sperber I. Biliary excretion and choleresis. Proc Int Pharmacol Meet. (1963) 137-43.
[35] Millburn P, Smith RL, Williams RT. Biliary excretion of foreign compounds. Biphenyl, stilboestrol and phenolphthalein in the rat: molecular weight, polarity and metabolism as factors in biliary excretion. Biochem J. 105 (1967) 1275-81.
[36] Hirom PC, Millburn P, Smith RL, Williams RT. Molecular weight and chemical structure as factors in the biliary excretion of sulphonamides in the rat. Xenobiotica. 2 (1972) 205-14.
[37] Donovan JL, Crespy V, Manach C, Morand C, Besson C, Scalbert A, et al. Catechin is metabolized by both the small intestine and liver of rats. J Nutr. 131 (2001) 1753-7.
[38] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 455 (1976) 152-62.
[39] Ling V. Drug resistance and membrane alteration in mutants of mammalian cells. Can J Genet Cytol. 17 (1975) 503-15.
[40] Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, et al. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 47 (1986) 381-9.
[41] Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci. 83 (1986) 4538-42.
[42] Croop JM, Raymond M, Haber D, Devault A, Arceci RJ, Gros P, et al. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol. 9 (1989) 1346-50.
[43] Hsu SI, Lothstein L, Horwitz SB. Differential overexpression of three mdr gene family members in multidrug-resistant J774.2 mouse cells. Evidence that distinct P-glycoprotein precursors are encoded by unique mdr genes. J Biol Chem. 264 (1989) 12053-62.
[44] Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 84 (1987) 7735-8.
[45] Fricker G, Drewe J, Huwyler J, Gutmann H, Beglinger C. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation. Br J Pharmacol. 118 (1996) 1841-7.
[46] Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 23 (1980) 682-4.
[47] Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41 (1981) 1967-72.
[48] Tamai I, Safa AR. Competitive interaction of cyclosporins with the Vinca alkaloid-binding site of P-glycoprotein in multidrug-resistant cells. J Biol Chem. 265 (1990) 16509-13.
[49] Tamai I, Safa AR. Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem. 266 (1991) 16796-800.
[50] Ferreira RJ, Ferreira MJ, dos Santos DJ. Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model. 53 (2013) 1747-60.
[51] Administration FD. Guidance for industry: bioanalytical method validation. Available from: http://wwwfdagov/downloads/Drugs/Guidance/ucm070107pdf. (2001).
[52] Wang J, Zhao X-H. Degradation kinetics of fisetin and quercetin in solutions as effected by pH, temperature and coexisted proteins. J Serb Chem Soc. (2015).
[53] Chamberlain J. The Analysis of Drugs in Biological Fluids 2nd Edition: CRC press; 1995.
[54] Oh JH, Lee YJ. Sample preparation for liquid chromatographic analysis of phytochemicals in biological fluids. Phytochem Anal. 25 (2014) 314-30.
[55] Hughes RD, Millburn P, Williams RT. Molecular weight as a factor in the excretion of monoquaternary ammonium cations in the bile of the rat, rabbit and guinea pig. Biochem J. 136 (1973) 967-78.
[56] Hirom PC, Millburn P, Smith RL, Williams RT. Species variations in the threshold molecular-weight factor for the biliary excretion of organic anions. Biochem J. 129 (1972) 1071-7.
[57] Sharifi M, Ghafourian T. Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J. 16 (2014) 65-78.
[58] Mullen W, Edwards CA, Crozier A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr. 96 (2006) 107-16.
[59] Wu B, Basu S, Meng S, Wang X, Hu M. Regioselective sulfation and glucuronidation of phenolics: insights into the structural basis. Curr Drug Metab. 12 (2011) 900-16.
[60] van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, van Velzen EJ, Gross G, et al. Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A. 108 Suppl 1 (2011) 4531-8.
[61] Aszalos A. Role of ATP-binding cassette (ABC) transporters in interactions between natural products and drugs. Curr Drug Metab. 9 (2008) 1010-8.
[62] Shapiro AB, Ling V. Positively cooperative sites for drug transport by P‐glycoprotein with distinct drug specificities. Eur J Biochem. 250 (1997) 130-7.
[63] Loo TW, Clarke DM. Identification of residues in the drug-binding domain of human P-glycoprotein. Analysis of transmembrane segment 11 by cysteine-scanning mutagenesis and inhibition by dibromobimane. J Biol Chem. 274 (1999) 35388-92.
[64] Boumendjel A, Bois F, Beney C, Mariotte AM, Conseil G, Di Pietro A. B-ring substituted 5,7-dihydroxyflavonols with high-affinity binding to P-glycoprotein responsible for cell multidrug resistance. Bioorg Med Chem Lett. 11 (2001) 75-7.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊