|
[1] Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 1830 (2013) 3670-95. [2] Du HQ. [Isolation and identification of fisetin in Cotinus coggygria]. Zhong Yao Tong Bao. 8 (1983) 29-30. [3] Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by "ferric reducing antioxidant power" assay and cyclic voltammetry. Biochim Biophys Acta. 1721 (2005) 174-84. [4] Ratty AK, Das NP. Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship. Biochem Med Metab Biol. 39 (1988) 69-79. [5] Bellik Y, Boukraa L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, et al. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules. 18 (2012) 322-53. [6] Lian T-W, Wang L, Lo Y-H, Huang I-J, Wu M-J. Fisetin, morin and myricetin attenuate CD36 expression and oxLDL uptake in U937-derived macrophages. Biochim Biophys Acta. 1781 (2008) 601-9. [7] Sagara Y, Vanhnasy J, Maher P. Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation. J Neurochem. 90 (2004) 1144-55. [8] Maher P, Dargusch R, Bodai L, Gerard PE, Purcell JM, Marsh JL. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease. Hum Mol Genet. 20 (2011) 261-70. [9] Maher P. Modulation of multiple pathways involved in the maintenance of neuronal function during aging by fisetin. Genes Nutr. 4 (2009) 297-307. [10] Nabavi SF, Braidy N, Habtemariam S, Sureda A, Manayi A, Nabavi SM. Neuroprotective effects of Fisetin in Alzheimer's and Parkinson's diseases: from chemistry to medicine. Curr Top Med Chem. 16 (2016) 1910-5. [11] Ravichandran N, Suresh G, Ramesh B, Siva GV. Fisetin, a novel flavonol attenuates benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Food Chem Toxicol. 49 (2011) 1141-7. [12] Khan N, Asim M, Afaq F, Zaid MA, Mukhtar H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res. 68 (2008) 8555-63. [13] Smith ML, Murphy K, Doucette CD, Greenshields AL, Hoskin DW. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells. J Cell Biochem. (2016). [14] Klimaszewska-Wisniewska A, Halas-Wisniewska M, Tadrowski T, Gagat M, Grzanka D, Grzanka A. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells. Cancer Cell Int. 16 (2016) 10. [15] Shia CS, Tsai SY, Kou SC, Hou YC, Chao PDL. Metabolism and pharmacokinetics of 3,3',4',7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites. J Agric Food Chem. 57 (2009) 83-9. [16] Touil YS, Auzeil N, Boulinguez F, Saighi H, Regazzetti A, Scherman D, et al. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. Biochem Pharmacol. 82 (2011) 1731-9. [17] Ragelle H, Crauste-Manciet S, Seguin J, Brossard D, Scherman D, Arnaud P, et al. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice. Int J Pharm. 427 (2012) 452-9. [18] Seguin J, Brulle L, Boyer R, Lu YM, Ramos Romano M, Touil YS, et al. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int J Pharm. 444 (2013) 146-54. [19] Wagner JG. Pharmacokinetics for the pharmaceutical scientist: CRC Press; 1993. [20] Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm. 6 (1978) 547-58. [21] Gideon S. Estimating the dimension of a model. Ann Stat. 6 (1978) 461-4. [22] Mignat C, Wille U, Ziegler A. Affinity profiles of morphine, codeine, dihydrocodeine and their glucuronides at opioid receptor subtypes. Life Sci. 56 (1995) 793-9. [23] Hand CW, Blunnie WP, Claffey LP, McShane AJ, McQuay HJ, Moore RA. Potential analgesic contribution from morphine-6-glucuronide in CSF. Lancet. 2 (1987) 1207-8. [24] Dutton G. The biosynthesis of glucuronides in Glucuronic Acid. Academic Press, New York. (1966) 185-299. [25] Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenet Genomics. 7 (1997) 255-69. [26] Falany CN, Chowdhury JR, Chowdhury NR, Tephly TR. Steroid 3- and 17-OH UDP-glucuronosyltransferase activities in rat and rabbit liver microsomes. Drug Metab Dispos. 11 (1983) 426-32. [27] Layne D. New metabolic conjugates of steroids. Metabolic conjugation and metabolic hydrolysis: Academic Press New York; 1970. p. 21-52. [28] Kensler TW, Egner PA, Davidson NE, Roebuck BD, Pikul A, Groopman JD. Modulation of aflatoxin metabolism, aflatoxin-N7-guanine formation, and hepatic tumorigenesis in rats fed ethoxyquin: role of induction of glutathione S-transferases. Cancer Res. 46 (1986) 3924-31. [29] Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 130 (2000) 2073S-85S. [30] Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 458 (1999) 224-30. [31] Lin LC, Pai YF, Tsai TH. Isolation of Luteolin and Luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and Their Pharmacokinetics in Rats. J Agric Food Chem. 63 (2015) 7700-6. [32] Chen Z, Chen M, Pan H, Sun S, Li L, Zeng S, et al. Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metab Dispos. 39 (2011) 667-74. [33] Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 78 (2005) 260-77. [34] Sperber I. Biliary excretion and choleresis. Proc Int Pharmacol Meet. (1963) 137-43. [35] Millburn P, Smith RL, Williams RT. Biliary excretion of foreign compounds. Biphenyl, stilboestrol and phenolphthalein in the rat: molecular weight, polarity and metabolism as factors in biliary excretion. Biochem J. 105 (1967) 1275-81. [36] Hirom PC, Millburn P, Smith RL, Williams RT. Molecular weight and chemical structure as factors in the biliary excretion of sulphonamides in the rat. Xenobiotica. 2 (1972) 205-14. [37] Donovan JL, Crespy V, Manach C, Morand C, Besson C, Scalbert A, et al. Catechin is metabolized by both the small intestine and liver of rats. J Nutr. 131 (2001) 1753-7. [38] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 455 (1976) 152-62. [39] Ling V. Drug resistance and membrane alteration in mutants of mammalian cells. Can J Genet Cytol. 17 (1975) 503-15. [40] Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, et al. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell. 47 (1986) 381-9. [41] Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci. 83 (1986) 4538-42. [42] Croop JM, Raymond M, Haber D, Devault A, Arceci RJ, Gros P, et al. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol. 9 (1989) 1346-50. [43] Hsu SI, Lothstein L, Horwitz SB. Differential overexpression of three mdr gene family members in multidrug-resistant J774.2 mouse cells. Evidence that distinct P-glycoprotein precursors are encoded by unique mdr genes. J Biol Chem. 264 (1989) 12053-62. [44] Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 84 (1987) 7735-8. [45] Fricker G, Drewe J, Huwyler J, Gutmann H, Beglinger C. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation. Br J Pharmacol. 118 (1996) 1841-7. [46] Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 23 (1980) 682-4. [47] Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41 (1981) 1967-72. [48] Tamai I, Safa AR. Competitive interaction of cyclosporins with the Vinca alkaloid-binding site of P-glycoprotein in multidrug-resistant cells. J Biol Chem. 265 (1990) 16509-13. [49] Tamai I, Safa AR. Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem. 266 (1991) 16796-800. [50] Ferreira RJ, Ferreira MJ, dos Santos DJ. Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model. 53 (2013) 1747-60. [51] Administration FD. Guidance for industry: bioanalytical method validation. Available from: http://wwwfdagov/downloads/Drugs/Guidance/ucm070107pdf. (2001). [52] Wang J, Zhao X-H. Degradation kinetics of fisetin and quercetin in solutions as effected by pH, temperature and coexisted proteins. J Serb Chem Soc. (2015). [53] Chamberlain J. The Analysis of Drugs in Biological Fluids 2nd Edition: CRC press; 1995. [54] Oh JH, Lee YJ. Sample preparation for liquid chromatographic analysis of phytochemicals in biological fluids. Phytochem Anal. 25 (2014) 314-30. [55] Hughes RD, Millburn P, Williams RT. Molecular weight as a factor in the excretion of monoquaternary ammonium cations in the bile of the rat, rabbit and guinea pig. Biochem J. 136 (1973) 967-78. [56] Hirom PC, Millburn P, Smith RL, Williams RT. Species variations in the threshold molecular-weight factor for the biliary excretion of organic anions. Biochem J. 129 (1972) 1071-7. [57] Sharifi M, Ghafourian T. Estimation of biliary excretion of foreign compounds using properties of molecular structure. AAPS J. 16 (2014) 65-78. [58] Mullen W, Edwards CA, Crozier A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr. 96 (2006) 107-16. [59] Wu B, Basu S, Meng S, Wang X, Hu M. Regioselective sulfation and glucuronidation of phenolics: insights into the structural basis. Curr Drug Metab. 12 (2011) 900-16. [60] van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, van Velzen EJ, Gross G, et al. Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A. 108 Suppl 1 (2011) 4531-8. [61] Aszalos A. Role of ATP-binding cassette (ABC) transporters in interactions between natural products and drugs. Curr Drug Metab. 9 (2008) 1010-8. [62] Shapiro AB, Ling V. Positively cooperative sites for drug transport by P‐glycoprotein with distinct drug specificities. Eur J Biochem. 250 (1997) 130-7. [63] Loo TW, Clarke DM. Identification of residues in the drug-binding domain of human P-glycoprotein. Analysis of transmembrane segment 11 by cysteine-scanning mutagenesis and inhibition by dibromobimane. J Biol Chem. 274 (1999) 35388-92. [64] Boumendjel A, Bois F, Beney C, Mariotte AM, Conseil G, Di Pietro A. B-ring substituted 5,7-dihydroxyflavonols with high-affinity binding to P-glycoprotein responsible for cell multidrug resistance. Bioorg Med Chem Lett. 11 (2001) 75-7.
|