跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宗澂
研究生(外文):Tsung-Cheng Li
論文名稱:電鍍銅製程中鍍液劣化行為之研究
論文名稱(外文):Investigation of Bath Degradation during Copper Electrochemical Deposition
指導教授:陳智陳智引用關係
指導教授(外文):Chih Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:55
中文關鍵詞:電鍍添加劑抑制劑加速劑劣化交流阻抗
外文關鍵詞:electroplatingadditivesPEGSPSdegradationimpedance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:992
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文探討電鍍液在電鍍過程中的劣化行為,採用的電鍍液系統分別為單獨添加PEG之溶液與同時添加PEG、SPS之溶液,電鍍模式為定電流電鍍。利用三種電化學分析(電鍍v-t曲線、交流阻抗測試、極化曲線掃瞄)來進行電鍍液的檢測,並利用掃瞄式電子顯微鏡(SEM)觀察電鍍製程填洞良率與銅膜表面平整度。對於實驗結果的討論,參考文獻中可能的機制並加以引用,同時設計適當的實驗來驗證此機制影響我們電鍍系統的可能性。
在單獨添加PEG之溶液中,填洞良率與銅膜性質皆隨著電鍍液時效而劣化。關於此現象我們引用了兩個有可能的機制來解釋:1)長鏈PEG裂解,2)PEG與銅離子形成錯和物。在電鍍製程中,未裂解的長鏈PEG藉著吸附達到有效的抑制,此行為決定了定電流模式電鍍之下所需的電壓;當PEG裂解,包覆銅離子形成錯和物,降低溶液導電度,進而造成電鍍電壓逐漸上升。
在同時添加PEG、SPS之溶液中,首先對於兩添加劑的關係,我們對文獻中的所提的機制做小部分的修正與補充。而在電鍍過程之中,電鍍電壓呈現兩階段的變化:在電鍍初期,電壓為逐漸下降的趨勢;時效增加之後,電壓為逐漸上升的趨勢。對此我們採用三個可能的機制來進行討論。此外,在溶液電阻發生變化之後,電鍍填洞良率與銅膜性質仍能有效維持。

The degradation effects on (PEG, SPS)-containing baths are investigated in this study. The baths are analyzed by three methods: in-situ measured v-t curves of galvanostatic plating, AC-impedance scan, and i-E curve scan. The gap-filling capability for the baths was examined by cross-sectional SEM images. By modifying the mechanisms that were presented in previous literatures, some possible models for the degradation are proposed.
In the PEG-containing bath, an evident deterioration of the gap-filling yield and of the surface roughness of the deposited film are observed after ECD aging. Two mechanisms are proposed to explain this degradation: 1) crack of long-chain PEGs, and 2) complexing between PEGs and Cu ions. When some long-chain PEGs crack into shot-chain ones, the remained long-chain PEGs still dominate the value of cell voltage, while slight fluctuation in voltages is attributed to the formation of complexes that results from the continuously cleaved short-chain PEGs.
In the (PEG, SPS)-containing bath, a modified mechanism of the behaviors of PEG and SPS are proposed and called “Slow adsorption / desorption mechanism.” As the electroplating proceeds, the variation among v-t curves is divided into two trends: the cell voltages are increasing following by decreasing as more samples plated. Besides, the yield of gap-filling is slightly affected by the variation of the bath, and the superfilling could be maintained even after aging of bath. Three possible mechanisms for the trend of degradation are proposed and will be further discussed in this thesis.

Chapter1. Introduction
1.1. Review of Electrochemical deposition (ECD) in Multilevel Interconnection
1.1.1. Basics of Copper ECD
1.1.2. Copper ECD in damascene processing
1.1.3. Organic Additives of Plating Baths
1.2. Overview of thesis
Chapter2. Effect of PEG on Cu ECD
2.1. Review of Previous Studies
2.1.1. Characteristics of PEG
2.1.2. Mechanism for superfilling
2.1.3. Degradation
2.2. Experiments
2.3. Results and Discussion
2.3.1. Evolution of cell voltage during ECD process
2.3.2. Degradation of PEG-containing electrolyte
2.3.2.1. Factors affecting the cell voltage during ECD
2.3.1.2. Proposed Model
2.3.2. Effect of degradation on gap-filling
2.4. Conclusions
Chapter3. Effect of SPS on Cu ECD
3.1. Review of Previous Studies
3.1.1. Characteristics
3.1.2. Filling model
3.2. Experiment
3.3. Results and Discussion
3.3.1. Roles of PEG and SPS during ECD process
3.3.2. Degradation of the electrolyte
3.3.3. Effect of degradation on gap-filling
3.4. Conclusions
Reference

[1] Changsup Ryu, “Microstructure and Reliability of Copper Interconnects,” Department of materials science and engineering of Stanford university (1998)
[2] C.K. Hu, B. Luther, F.B. Kaufman, J. Hummel, C. Uzoh, and D.J. Pearson, “Copper interconnection integration and reliability,” Thin Solid Films, 262, pp84 (1995)
[3] Shih-Chieh Chang, “Investigation of Cu Electroplating and Electropolishing Processing for Multilevel Interconnection,” Department of materials science and engineering of national Chiao Tung university (2003)
[4] J.D. Reid, A.P. David. “Impedance Behavior of a Sulfuric Acid-cupric Sulfate/Copper Cathode Interface,” JES, 1389 (1987)
[5] J.J. Kelly, A.C. West, “Copper Deposition in the Presence of Polyethylene Glycol,” JES, 145, 3477 (1998)
[6] K.M. Takahashi, M.E. Gross, “Transport Phenomena That Control Electroplated Copper Filing of Submicron Vias and Trenches,” JES, 146, 4499 (1999)
[7] C. W. Kaanta et al., Proc. IEEE VMIC, pp. 144 (1991)
[8] V.M. Dubin, R.R. Brewer, H. Simka, S. Shankar, “Characterization and Control of Cu Electroplating Chemistries,” Future Fab, 13 (2002)
[9] J.D. Reid, S. Mayer, E. Broadbent, “Factors Influencing Damascene Feature Fill Using Copper PVD and Electroplating,” Solid State Technology, 86 (July 2000)
[10] Zhi-Wen Sun, “Optimized bath control for void-free copper deposition,” Solid State Technology, 97 (Nov 2001)
[11] K.H. Dietz, “Organic Additives in Copper Plating Baths,” CIRCUITREE, 22 (Feb 2000)
[12] M. Tan, J Harb, “Additive Behavior during Copper Electrodeposition in Solutions Containing Cl-, PEG, and SPS,” JES, 150, C420 (2003)
[13] T.O. Drews, J.C. Ganley, R.C. Alkire, “Evolution of Surface Roughness during Copper Electrodeposition in the Presence of Additives,” JES, 150, C325 (2003)
[14] J.P. Healy, D. Pletcher, J. Electroanal. Chem, 338, 155 (1992)
[15] J.D. Reid, A.P. David, “Effects of Polyethylene Glycol on the Electrochemical Characteristics of Copper cathodes in an Acid Copper Medium,” Plat. Surf. Finish, 74, 66 (Jan 1987)
[16] D. Stoychev, I. Vitanova, S. Rashkov, T. Vitanov, Surf. Technol., 7, 427 (1978)
[17] G. Hope, G. Brown, D. Schweinsberg, K. Shimizu, K. Kobayashi, J. Appl. Electrochem, 25, 890 (1995)
[18] M. Yokoi, S. Konishi, T. Hayashi, Denki Kagaku, 51, 456 (1983)
[19] D. Stoychev, C. Tsvetanov, “Behavior of polyethylene glycol during electrodeposition of bright copper coating in sulfuric acid electrolytes,” J. Appl. Electrolchem., 26, 741 (1996)
[20] Hayase M, Taketani M, Aizawa K, Hatsuzawa T, Hayabusa K, “Copper bottom-up deposition by breakdown of PEG-Cl inhibition,” Electrochem. Solid State Letters, 5, C98 (OCT 2002)
[21] L.T. Koh, G.Z. Tou, S.Y. Lim, C.Y. Li, P.D. Foo, “Factors influencing open circuit decomposition behavior of sulfur-containing additive component used in Cu plating for advanced interconnect metallization,” Microelectronics J., 32 973 (2001)
[22] E.E. Fardon, F.C. Walsh, S.A. Campbell, “Effect of thiourea, benzotriazole and 4,5-dithiaoctane-1,8-disulhonic acid on the kinetics of copper deposition from dilute acid sulphate solutions,” J. Appl. Electrochem., 25, 574 (1995)
[23] T.P. Moffat, B. Baker, D. wheeler, D. Jossell, “Accelerator Aging Effects During Copper Electrodeposition,” ESSL, 6, C59 (2003)
[24] N. Kovarsky, Z. Sun, “Mechanisms of Cu Interconnect Plating: Effect of Accelerator and Suppressor Additives on Trench and Via Filling,” to be submitted to JES
[25] D. Jossell, D. Wheeler, W.H. Huber, T.P. Moffat, “Superconformal Electrodeposition in Submicrn Features,” Phy. Review Letter, 87 016102-1 (July 2001)
[26] T.P. Moffat, D. Wheeler, W.H. Huber, D. Jossell, “Superconformal Electrodeposition of Copper,” ESSL, 4, C26 (2001)
[27] T.P. Moffat, J.E.Bonevich, W.H. Huber, A. Stanisevsky, D.R. Kelly, “Superconformal Electrodeposition of Copper in 500-90 nm Features,” JES, 147, 4524 (2000)
[28] A. Frank, J. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries,” JES, 150, C244 (2003)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top