跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李文領
研究生(外文):Wen Lieng Lee, MD
論文名稱:第一型類胰島素生長因子在心臟重塑作用之角色
論文名稱(外文):The Role of Insulin-like Growth Factor I in Cardiac Remodeling
指導教授:王秉訓林幸榮林幸榮引用關係丁紀台
指導教授(外文):Ping H. Wang, M.D.Shing-Jong Lin, M.D., Ph.D.Chih-Tai Ting, M.D., Ph.D.
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:88
語文別:中文
論文頁數:121
中文關鍵詞:第一型類胰島素生長因子心臟重塑作用心肌細胞細胞計劃性死亡急性心肌梗塞擴大性心肌病變
外文關鍵詞:insulin-like growth factor Icardiac remodelingcardiomyocytecell apoptosisacute myocardial infarctiondilated cardiomyopathy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著社會人口年齡結構老化,心血管疾病日益增加,心肌梗塞與心臟衰竭是心臟科急診與門診住院常見的二種疾病。心衰竭是公共衛生的一大挑戰,治療心衰竭耗費龐大的醫療資源,因為心衰竭造成的社會經濟生產力損失亦極為可觀。因為心肌缺氧梗塞與不同原因造成之心肌損傷心臟功能異常,身體會啟動種種的代償系統企圖補償之;心室的心肌細胞及間質組織也會不斷地因為各種不同的分子機轉進行代償作用(適應過程),即心室重塑作用。當心室功能不足以達到身體的需要或代償作用過度活化時,心衰竭隨之而來。近年來我們對心室重塑作用的分子機轉,心衰竭的致病機轉及治療不斷地在擴展與進步。在前者近年來學者認為心肌細胞的計劃性死亡可能是心室重塑過程的重要因子之一,因為它會造成有收縮功能的組織減少、心肌細胞代償性肥大及心肌修復性纖維化。在後者我們目前對心肌梗塞及心衰竭的治療已能提供多種早期有效的治療方式及選擇,但是心衰竭仍是一極為棘手的普遍問題;在現有的藥物、非藥物、電氣、器械、手術治療選擇之外,醫學界仍盼望更新有效而實際的治療方式,近年來研究不同生長因子在心臟疾病的變化及應用不同生長因子治療心血管疾病的努力不斷。本論文即在探討第一型類胰島素生長因子在急性心肌梗塞時之變化及其與左心室重塑作用及患者臨床預後之相關性,和應用第一型類胰島素生長因子治療動物擴大性心肌病變心衰竭與探索其對心肌細胞計劃性死亡之影響及此種影響與心臟解剖及功能的相關性。在第一章中我首先回顧心衰竭的流行病學、致病機轉及代償作用,並探討心肌重塑作用發生的分子機轉及在細胞階層、心臟解剖結構及心室功能造成之影響。在本章中我也說明了心肌細胞的特殊死亡方式 - 細胞計劃性死亡,其變化特色、分子機轉、辨認方法,發生心肌細胞計劃性死亡的臨床心臟疾病種類及發生機轉。我亦詳細探討了心肌細胞計劃性死亡如何參與心室重塑作用的機轉。第二章則仔細回溯了目前我們對第一型類胰島素生長因子及其結合蛋白的認識,並說明第一型類胰島素生長因子在心肌細胞之多重細胞信號傳導路徑及分子作用機轉。我也探討了第一型類胰島素生長因子在心臟血管組織的正常生理作用及不同心血管疾病狀況下此生長因子表現及控制之改變。在第本章中我也回顧第一型類胰島素生長因子與各種不同心臟疾病及心室重塑作用關係之研究並發掘應用第一型類胰島素生長因子治療心肌損傷及心臟衰竭之研究。第三章則呈現作者研究人類急性心肌梗塞後第一型類胰島素生長因子系統之變化及其與左心室早期重塑作用之關係,我發現急性心肌梗塞後第一型類胰島素生長因子參與了早期的心室重塑過程並可能決定患者的臨床預後。血清第一型類胰島素生長因子愈低則重塑作用愈大而預後愈差。第四章則是作者應用第一型類胰島素生長因子治療動物因慢性心室快速電刺激引發心肌病變心衰竭的研究結果。第一型類胰島素生長因子可有效部份回復心衰竭之血流力學異常,降低體循環阻力及抑制心肌細胞計劃性死亡。心肌細胞計劃性死亡與心臟結構及功能有直接而明顯之因果關係。
結論:第一型類胰島素生長因子在急性心肌梗塞及心肌病變心衰竭之心室重塑作用佔有重要角色,未來可能可應用此生長因子治療人類急性心肌梗塞及心肌病變心衰竭,改善心室重塑作用,回復心臟功能,甚至延長患者壽命,這些有待未來繼續研究証實之。
As life expectancy of the general population increases and the structure of population hierarchy ages, the incidence and prevalence of cardiovascular diseases increase concomitantly. Acute myocardial infarction and congestive heart failure are two commonly seen diseases in cardiology practices. Congestive heart failure, the end stage of many cardiac diseases, becomes a significant public health issue. The resources required to take care of heart failure represent a major burden for our health care system and the loss of productivity resulting from heart failure is significant.
When myocardial function fails to function properly after myocardial injuries, multiple compensatory systems in the body are activated. In the meantime, cardiac myocytes and interstitial tissue continuously undergo adaptive processes, the so-called ventricular remodeling, to maintain its pumping function. When the cardiac function could not meet the body need or the compensatory systems were over-activated, heart failure appears. In recent years our knowledge of the molecular and cellular mechanisms of ventricular remodeling and treatment of congestive heart failure have been expanded. A new paradigm during the development of heart failure was recently identified and programmed cell death (apoptosis) of cardiomyocytes is considered one of the major factors contributing to ventricular remodeling. This is because loss of cardiomyocytes leads to loss of cardiac contractile tissue, compensatory hypertrophy of cardiac myocytes, and subsequent fibrosis of cardiac tissue. Congestive heart failure and myocardial infarction are the two major public health issues in cardiology awaiting to be conquered. Despite the recent advancements of various pharmacological and interventional treatments, current therapeutic modalities are quite limited. Among the new strategies, growth factors have been proposed as potential agents that may be used to treat various heart diseases.
In this thesis, I address the role of one recently reappraised growth factor, insulin-like growth factor I (IGF I), in cardiac remodeling of two commonly seen cardiac disorders, acute myocardial infarction and cardiomyopathic congestive heart failure. First, I reviewed the epidemiology, pathogenesis and compensatory mechanisms of congestive heart failure in Chapter 1. In this chapter we also explored the molecular mechanisms of cardiac remodeling and the results and consequences of ventricular remodeling on cardiac myocyte, interstitial tissue, cardiac anatomical structure and ventricular performance. Chapter 1 also illustrates a pathognomonic way of cardiomyocyte cell loss: programmed cell loss, its characteristic membranous, nuclear and cytoplasmic alterations, molecular mechanisms and ways of identification. I reviewed the cardiac diseases in which programmed cell deaths of cardiomyocytes occurred and the possible mechanisms. I also looked at how apoptosis of cardiac myocytes participated in the ventricular remodeling. In Chapter 2 I went over the current understandings of IGF I and IGF binding proteins, and scrutinized the multiple intracellular signaling pathways and molecular mechanisms of IGF I actions. I also looked into the normal physiological actions of IGF I in cardiovascular cell cultures and tissues, and altered expression and control of IGF I in different cardiovascular diseases. In this chapter I also probed the relationships between IGF I expression, cardiovascular disorders and ventricular remodelings. Moreover, I examined all the published works studying the effects of IGF I on cardiac diseases. I presented the results of my study on the changes of serum IGF I and its relationship to left ventricular remodeling and patient clinical outcome in human acute myocardial infarction in Chapter 3. I discovered that IGF I took part in the ventricular remodeling early after acute myocardial infarction and potentially thereby influenced later clinical outcome. The lower the serum level of IGF I was after acute myocardial infarction, the worse the patient outcome became. Chapter 4 presents the results of my other another study exploring the therapeutic effects of IGF I in pacing-induced congestive heart failure. IGF I effectively restored the ventricular hemodynamic function, normalized elevation of systemic vascular resistance and suppressed apoptosis of cardiac myocyte in heart failure. There was statistically significant relationship between the extent of cardiomyocyte apoptosis and cardiac structure and function.
In conclusion, IGF I plays an important role in the ventricular remodeling of both human acute myocardial infarction and canine dilated cardiomyopathy. IGF I remains a possible candidate to be used as a therapeutic agent in human acute myocardial infarction and dilated cardiomyopathy with heart failure. The effect of IGF I may be mediated through improving ventricular remodeling and hemodynamic alteration, thus recovering cardiac function and extending subject life span. The results of my studies provide a strong argument for the potential therapeutic value of IGF I in human heart failure.
封面
目錄
中文摘要
英文摘要
中英文對照表
第一章 心臟衰竭,心室重塑作用與心肌戀胞計劃性死亡
心臟衰竭行病學
心臟衰竭的代償機轉
心室重塑作用
心肌細胞計劃性死亡
第二章 第一型類胰島素生長因子
第一型類胰島素生長因子系統與心臟血管疾病之關係
第一型類胰島素生長因子與心室重塑作用關係
第三章 人類急性心肌梗塞後第一型類胰島素生長因子系統之變化及其與左心室重塑過程之關係
第四章 應用第一型類胰島素生長因子治療狗快速心室電剌激心肌病變心衰竭
第五章 結論
參考文獻
1. Bromme HJ, Holtz J. Apoptosis in the heart :when and why? Molecular and Cellular Biochemistry 1996;163/164:261-275.
2. MacLellan WR, Schneider MD. Death by design: programmed cell death in cardiovascular biology and disease. Circ Res 1997;81:137-144
3. Rumberger JA. Ventricular dilatation and remodeling after myocardial infarction. Mayo Clin Proc 1994; 69: 664-674
4. Weisman HF, Bush DE, Mannisi JA, Weisfeldt ML, Healy BH. Cellular mechanism of myocardial infarct expansion. Circulation 1988;78:186-201.
5. Bing OHL. Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic pressure overlad. J Mol Cell Cardiol 1994; 26: 943-948
6. Thom TJ, Kannel WB, Silbershatz H, D’Agostino RB. Incidence, prevalence and mortality of cardiovascular diseases. In: Alexander RW, Schilant RC, Fuster V, eds. Hurst’s The Heart. New York, McGraw Hill Companies, Inc., 1998; pp 12-13.
7. 中華民國行政院衛生署民國八十七年台灣地區主要死亡原因統計資料。
8. 中華民國行政院衛生署民國八十七年台灣地區老年人口主要死亡原因統計資料。
9. 中華民國行政院衛生署台灣地區歷年每十萬人口死亡率按主要死亡原因別分統計資料。
10. American Heart Association. Heart and Stroke Facts: 1995 Statistical Supplement. American Heart Association; 1994. Dallas, TX 75231-4596.
11. Ho KKL, Anderson KM, Kannel WB, Grossman W, Levy D. Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 1993; 88(1): 107-115
12. Ho KKL, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: The Framingham Study. J Am Coll Cardiol 1993; 22(4): 6A-13A
13. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE investigators. N Engl J Med 1992; 327(10): 669-677
14. Schlant RC, Sonnenblick EH, Katz AM. Pathophysiology of heart failure. In: Alexander RW, Schilant RC, Fuster V, eds. Hurst’s The Heart. New York, McGraw Hill Companies, Inc., 1998; pp 689-704
15. Cohn JN, Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation 1995; 91: 2504-2507
16. Goldstein S, Ali AS, Sabba H. Ventricular remodeling: Mechanisms and prevention. Cardiol Clin 1998; 16(4): 623-632
17. Klug D, Robert V, Swynghedauw B. Role of Mechanical and hormonal factors in cardiac remodeling and the biologic limits of myocardial adaptation. Am J Cardiol 1993; 71: 46A-54A
18. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997; 80(11A): 15L-25L
19. Takahashi T, Calderone A, Izzo NJ Jr, Maki TM, Marsh JD, Colucci WS. Hypertrophic stimuli-induced transforming growth factor-1 expression in rat ventricular myocytes. J Clin Invest 1994; 94: 1470-1483
20. Sadoshima J-I, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993; 75: 977-984
21. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y. Endothelin-1 is involved in mechanical stress-induced cardiomyocytes hypertrophy. J Biol Chem 1996; 271: 3221-3227
22. Simpson P, McGrath A. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha1 adrenergic response. J Clin Invest 1983; 72: 732-738
23. Sadoshima J-I, Izumo S. Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: Critical role of the AT1 receptor subtype. Circ Res 1993; 73: 413-423
24. Shubeita HE, Mcdonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990; 265: 20555-20562
25. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interlukin-1 modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest 1995; 96: 1093-1099
26. Parker TG, Packer SE, Scheider MD. Peptide growth factors can provoke ‘fetal’ contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990; 85: 507-514
27. Webster KA, Discher DJ, Bishopric NH. Regulation of Fox and jun immdiate-early genes by redox or metabolic stress in cardiac myocytes. Circ Res 1994; 74: 679-686
28. Lompre AM, Schwartz K, d’Albis A, Lacombe G, Thiem NV, Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature 1979; 282: 105-107
29. Cummins P. Transitions in human atrial and ventricular myosin light-chain isoenzymes in response to cardiac pressure-overload-induced hypertrophy. Biochem J 1982; 205: 195-204
30. Schaub MC, Hirzel HO. Atrial and ventricular isomyosin composition in patients with different forms of cardiac hypertrophy. Basic Res Cardiol 1987; 82(suppl 2): 357-367
31. Bastie DE LA D, Levitsky D. Rappaport L, Mercadier JJ, Marotte F, Wisnewsky C, Brokovich V, Schwartz K, Lonpre AM. Function of the sarcoplasmic reticulum and expression of its Ca++ ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 1990; 66: 554-564
32. Mondry AF, Bourgeois F, Carre F, Swynghedrauw B, Moalic JM. Derease in 1-adrenergic and M2-muscarinic receptor mRNA levels and unchanged accumulationof mRNAs coding for G1-2 and Gs proteins in rat cardiac hypertrophy. J Mol Cell Cardiol 1995; 27: 2287-2294
33. Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 1995; 95: 888-894
34. Hanf R, Drubaix I, Marotte , Lelievre LG. Rat Cardiac hypertrophy altered sodium-calcium exchange activity in sarcolemmal vesicles. FEBS Lett 1988; 236: 145-149
35. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995; 92: 778-784
36. Shamraj OI, Grupp IL, Grupp G, Melvin D, Gradoux N, Kremers W, Lingrel JB, De Pover A. Charaterization of Na/K-ATPase, its isoforms, and the inotropic response to ouabain in isolated failing human hearts. Cardiovasc Res 1993; 27: 2229-2237
37. Takahashi T, Allen PD, Lacro RV, Marks AR, Dennis AR, Schoen FJ, Grossman W, Marsh JD, Izumo S. Expression of dihydropyridine receptor (Ca++ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J Clin Invest 1992; 90: 927-935
38. Mercadier JJ, Samuel JJ, Michel JB, Zongaro MA, De LA Bastie D. Lompre AM, Wisnewsky C, Rappaport L, Schartz K. Atrial natriuretic factor gene expression in rat ventricle during experimental hypertension in rat ventricle during experimental hypertension. Am J Physiol 1989; 257: H979-H987
39. Hirsch ST, Talsness CE, Schunkert H, Paul M, Dzau VJ. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 1991; 69: 475-482
40. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83: 1849-1865
41. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physio Rev 1999; 79(1): 215-262
42. Silver MA, Pick R, Brilla CG, Jalil JE, Janicki JS, Weber KT. Reactive and reparative fibrillar collagen remodeling in the hypertrophied rat left ventricle: two experimental models of myocardial fibrosis. Cardiovasc Res 1990; 24: 741-747
43. Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: its functional significance and regulatory factors. Cardiovasc Res 1993; 27: 341-348
44. Mann DL, Kent RL, Parsons B, Cooper G. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992; 85: 790-804
45. Cheng Wei, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH. Olivetti G. Anversa P. Stretch-induced programmend myocyte cell death. J Clin Invest. 1995;96:2247-2259
46. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJE, Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 1996; 98: 2854-2865
47. Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor-. J Clin Invest 1995; 95: 677-685
48. Buja LM, Entman ML. Modes of myocardial cell injury and cell death in ischemic heart disease. Circulation 1998; 98(14):1355-7
49. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994; 94: 1621-1628
50. Wu C-F, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997; 272: 14860-14866
51. Li PF, Dietz R, von Harsdorf R. Differential effect of hydrogen peroxide and superoxide anion on apoptosis and proliferation of vascular smooth muscle cells. Circulation 1997;96(10):3602-9
52. Weber KT, Pick R, Janicki JS, Gadodia G, Lakier JB. Inadequate collagen tethers in dilated cardiomyopathy. Am Heart J 1988; 116: 1641-1646
53. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol 1991; 68: 7D-16D
54. Grossman W, Jones D, Mclaurin LD. Wall stress and patterns of hypertrophy in the human left ventricular. J Clin Invest 1975; 56: 56-64
55. Douglas PS, Morrow R, Ioli A, Reichck N. Left ventricular shape, afterload and survival in idiopathic dilated cardiology. J Am Coll Cardiol 1989; 13: 311-315
56. Davies MT. Apoptosis in cardiovsacular disease. Heart 1997;77:498-501.
57. Popper H: Hepatocellular degeneration and death. In: Aeias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds). The liver: biology and pathobiologie, Second Edit. Raven Press, Ltd, New York, 1988; pp 1087-1103
58. Cohen JJ. Apoptosis: Mechanisms of life and death in the immune system. J Allergy Clin Immunol 1999; 103: 548-554
59. Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 1991; 129(5):2799-801
60. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P. Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Laboratory Investigation.1995;73:771-787.
61. Nishigaki K, Minatoguchi S, Seishima M, Asano KA, Noda T,Yasuda N, Sano H, Kumada H, Takemura M, Noma A. Plasma fas ligand, an inducer of apoptosis, and plasma soluble Fas, an inhibitor of apoptosis, in patients with chronic congestive heart failure. JACC 1997;29:1214-20.
62. Teiger E, Dam TV, Richard L, Wisnewsky C, Tea B S, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in Pressure Overload-induced Heart Hypertrophy in the Rat. J.Clin.Invest 1996;97:2891-2897.
63. Szabolcs M, Michler RE, Yang X, Aji W, Roy D, Athan E, Sciacca RR, Minanov OP, Cannon PJ. Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation 1996; 94(7):1665-73
64. Nunex G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998; 17: 3237-3245
65. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493-501
66. Didenko VV, Hornsby PJ. Presence of double-strand breaks with single-base 3’ overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol 1996; 135: 1369-1376
67. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996;74(1):86-107
68. Long X, Boluyt MO, Hipolito ML, Lundberg MS, Zheng JS, O''Neill L, Cirielli C, Lakatta EG, Crow MT. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 1997; 99(11):2635-43
69. Elsasser A, Schlepper M, Klovekorn WP, Cai WJ, Zimmermann R, Muller KD, Strasser R, Kostin S, Gagel C, Munkel B, Schaper W, Schaper J. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 1997; 96(9):2920-31
70. Saraste A, Pulkki K, Kallajoke M, Henriksen K, Parvinen M, Voipio-Pulkki LM. Apoprosis in human acute myocardial infarction. Circulation. 1997;95:320-323.
71. Weber KT, Pick R, Silver MA, Moe GW,J anicki JS, Zucker IH, Armstronh PW. Fibrillar Collagen and Remodeling of Dilated Canine Left Ventricle. Circulation 1990;82:1387-1401.
72. Kajstura J, Zhang X, Liu Y, Szoke E, Cheng W, Olivetti G, Hintze TH, Anversa P. The cellular basis of pacing-induced dilated cardiomyopathy -myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation.1995;92:2306-2317.
73. Leri A, Liu Y, Malhotra A, Li Q,Stiegler P, Claudio PP, Giordano A, Kajstura J, Hintxw TH. Anversa P. Pacing-induced heart failure in dogs enhances the expression of p53 and p53-dependent genes in ventricular myocytes.Circulation.1998;97:194-203.
74. Cheng Wei, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH. Olivetti G. Anversa P. Stretch-induced programmed myocyte cell death. J Clin Invest. 1995;96:2247-2259
75. Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997; 272(5 Pt 2):H2313-9
76. Anversa P. Myocyte apoptosis and heart failure. Eur Heart J 1998; 19(3):359-60
77. Teiger E, Dam T-V, Richard L, Wisnewsky C, Tea B-S, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 1996; 97: 2891-2897
78. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, DeLoreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997; 336: 1131-1141
79. Clark WA, Rudnick SJ, LaPres JJ, Andersen LC, LaPointe MC. Regulation of hypertrophy and atrophy in cultured adult heart cells. Circ Res 1993; 73: 1163-1176
80. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs L, Anversa P. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Cell Cardiol 1997; 29: 859-870
81. Feuerstein GZ, Bril A, Ruffolo RR Jr. Protective effects of carvedilol in the myocardium. Am J Cardiol 1997; 80(11A): 41L-45L
82. Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O. Oxidative stress during myocardial ischemia and heart failure. Eur Heart J 1998; 19(suppl B): B2-B11
83. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P. Stretch-induced programmed myocyte cell death. J Clin Invest 1995; 96: 2247-2259
84. Levine B, Kalman J, Meyer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 223: 236-241
85. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999; 99: 2934-2941
86. Balligand J-L, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T, Smith TW. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 1993; 91: 2314-2319
87. Brady AJB, Poole-Wilson PA, Harding SE, Warren JB. Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 1992; 263: H1963-H1966
88. Hare JM, Colucci WS. Role of nitric oxide in the regulation of myocardial function. Prog Cardiovasc Dis 1995; 38: 155-166
89. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak and Bcl-x. Circ Res 1999; 84(1): 21-33
90. Wu C-F, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 1997; 272: 14860-14866
91. Sadoshima J, Qiu Z, Morgan JP, Izumo S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes: The critical role of Ca++-dependent signaling. Circ Res 1995; 76: 1-15
92. Amati B, Littlewood TD, Evan GI, Land H. The c-myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBOJ 1993; 12: 5083-5087
93. Goussev A, Sharov VG, Shimoyama H, Tanimura M, Lesch M, Goldstein S, Sabbah HN. Effect of ACE inhibition on cardiocyte apoptosis in dogs with heart failure. Am J Physiol 1998; 272 (2 pt 2): H626-H631
94. Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR Jr, Feuerstein GZ. Circ Res 1998; 82(2): 166-174
95. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 1999; 99:1685-1691
96. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/ reperfusion injury in rats by a caspase inhibitor. Circulation 1998; 97: 276-281
97. Langford KS, Miell JP. The insulin-like growth factor I/binding protein axis: Physiology, pathophysiology and therapeutic manipulation. Eur J Clin Invest 1993; 23: 503-516
98. Tricoli JV, Ball LB, Scott J, Bell GI, Shows TB. Localization of insulin-like growth factor genes to human chromosomes 11 and 12. Nature 1984: 310: 784-786
99. Taylor BA, Grieco D. Localization of the gene encoding insulin-like growth factor I on mouse chromosome 10: Cell 1991; 56: 57-58
100. Daughaday WH, Rotwein P. Insulin-like factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. The Endocrine Society 1989;(10):68-91.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top