跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家銘
研究生(外文):Hsu, Chia-Ming
論文名稱:補充精胺酸對單次耗竭運動大鼠腎臟 氧化壓力之影響
論文名稱(外文):The Effect of L-Arginine Supplementation on Acute Exhaustive Exercise-induced Oxidative Stress in Kidney of Rat
指導教授:蔡秀純蔡秀純引用關係
指導教授(外文):Tsai, Shiow-Chwen
口試委員:蔡秀純王錫崗黃志賢
口試委員(外文):Tsai, Shiow-ChwenWang, Paulus S.Huang, Chih-Hsien
口試日期:2011-06-24
學位類別:碩士
校院名稱:臺北巿立體育學院
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:86
中文關鍵詞:抗氧化酵素衰竭運動精胺酸氧化壓力
外文關鍵詞:antioxidant enzymeexhaustive exerciseL-Arginineoxidative stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2926
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
運動的好處在近幾年不斷被提倡,但目前有許多研究證實,激烈或高強度運動不但會對身體不利,也會造成體內自由基過度增加,導致腎臟組織受到傷害。精胺酸 (L-arginine) 能增加肌肉生長及提升有氧運動的能力,並且具有減低氧化壓力與改善組織受損的效果。但部份文獻證實,在誘發腎小管結晶後,補充精胺酸反而會使腎臟疾病更加嚴重,甚至出現腎結石。故本篇研究目的有兩個:(一) 探討精胺酸是否能清除激烈運動所產生的自由基,進而降低腎臟的氧化壓力;(二) 觀察長期服用精胺酸是否會對腎臟造成負面的影響。實驗將 72隻 Spargue-Dawley 大鼠隨機分為靜態生活飲食控制組 (SC)、靜態生活補充精胺酸 (2 g/kg BW) (SC+Arg)、單次衰竭運動組 (E)、補充精胺酸合併單次衰竭運動組 (Arg+E)、單次衰竭運動後24小時犧牲組 (E-24) 及補充精胺酸合併單次衰竭運動後24小時犧牲組 (Arg+E-24h) 等六組,每組12隻。經30天餵養後,控制組大鼠立即犧牲,衰竭運動組大鼠在從事單次衰竭運動後,分成立即犧牲與24小時後犧牲。犧牲後收集血液及腎臟,檢測血液生化值、腎臟組織的黃嘌呤氧化酶 (xanthine oxidase,XO) 活性和TBARS 產量及抗氧化酵素的活性,包括 superoxide dismutase (SOD)、catalase、glutathione peroxidase 及 glutathione reductase。並以西方點墨法 (Western blot) 檢驗nitrotyrosine 蛋白表現。實驗數據都以SPSS 14.0 統計分析軟體套件進行單因子變異數分析 (One-Way ANOVA),並以Tukey’s進行事後比較 (post hoc) 組間差異。每次實驗各組至少重複三次,數據以 Mean±SEM 表示,當p<0.05 時,表示具有統計上之差異。結果顯示,血液生化值方面,衰竭運動顯著增加血漿尿素氮及運動 24 小時後的乳酸濃度,表示衰竭運動造成急性及延遲性的損傷。在抗氧化方面,精胺酸的補充能夠立即增加衰竭運動的過氧化氫酶活性,並將衰竭運動後24小時的過氧化氫酶活性維持在高活性,來降低延遲性的運動傷害。氧化壓力方面,精胺酸的補充確實能降低靜態生活、衰竭運動即衰竭運動後24小時XO的活性,也大大降低了運動所帶來的脂質過氧化的傷害。在nitrotyrosine 蛋白的表現上,補充精胺酸後,不論是靜態生活或是衰竭運動,都有顯著的增加。由本實驗的結果可知,補充精胺酸能夠有效地增加抗氧化酵素的活性,進而降低運動對腎臟所帶來氧化壓力。但若長期服用精胺酸,將會增加腎臟硝基酪胺酸蛋白增加而增加氮化壓力。


The advantage of physical exercise has been emphasized, however, strenuous exercise also resulted in overproduction of free radicals and leading to the damage of multiple tissues. L-arginine has been reported to promote the increasing of muscular growth and enhance the capability of aerobic exercise, and decrease oxidative stress as well as tissue damage. The previous studies indicated that supplementation of L-arginine could enhance the intrarenal oxidative stress in hyperoxaluric kidney with massive CaOx crystal deposition. Therefore, the aims of the study are to (1) study the effect of L-arginine supplementation on the reduction of exercise-induced free radical, (2) study whether the long-term supplementation of L-arginine can cause the negative impact in kidney. Seventy-two male Sprague-Dawley rats will be randomly assigned to six groups: (1) sedentary control, (2) sedentary control with 2% L-arginine supplementation, (3) exhaustive exercise, (4) 2% L-arginine supplementation and exhaustive exercise, (5) 24 h after exhaustive exercise, (6) 2% L-arginine supplementation and 24 h after exhaustive exercise. The animals will be kept in the control diets or L-arginine supplementation for 30 days. The exhaustive exercise groups will be performed with a single bout of strenuous exhaustive exercise on the treadmill. At the end of the study, the rats will be sacrificed as the experimental design. The production of TBARS, XO and the activities of antioxidant enzyme, including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase (GR) will be measured with commercial kits. Western blot will be performed to detect the protein expression of nitrotyrosine. All value were given as the mean±SEM. In some cases, the treatment means were tested for homogeneity by one-way ANOVA, and the different between specific means was tested for significance by Tukey’s test. A difference between two means was considered statistically significance when p<0.05. The results showed a significant increase in blood urea nitrogen and lactate concentration after exhaustive exercise. Supplementation of L-arginine attenuated the exhaustive exercise-induced increase of plasma creatinine and lactate concentration. Supplementation of L-arginine also increased the activities of catalase. On the oxidative stress, the activity of TBARS and XO were decreased by L-Arginine supplementation. But, long-term L-Arginine administration increased the nitrosative stress in kidney.
原創聲明書............................................... ii
學位考試審定書........................................... iii
中文摘要................................................. iv
英文摘要................................................. vi
謝誌..................................................... viii
目錄..................................................... ix
表目錄................................................... xii
圖目錄................................................... xiii
名詞縮寫................................................. xv

第壹章 緒論............................................. 1
第一節 研究背景...................................... 1
第二節 實驗假設...................................... 1
第三節 實驗目的...................................... 2
第貳章 文獻探討......................................... 3
第一節 腎臟生理...................................... 3
第二節 精胺酸...................................... 6
第三節 氧化壓力...................................... 11
第四節 精胺酸對氧化壓力的調節........................ 16
第參章 材料與方法....................................... 18
第一節 大鼠品種與飼養方法............................ 18
第二節 實驗設計...................................... 18
第三節 樣本分析項目與方............................. 20
第四節 資料處理與統計分析........................... 27
第肆章 實驗結果....................................... 29
第一節 體重及腎臟重量變化............................ 29
第二節 血液生化值.................................... 29
第三節 補充精胺酸對於衰竭運動誘發氧化壓.............. 31
第四節 補充精胺酸對大鼠腎臟中硝基酪胺酸蛋白表現的影響 33
第伍章 討論............................................. 34
第一節 補充精胺酸對衰竭運動大鼠血液生化值的影響...... 34
第二節 補充精胺酸對於衰竭運動後抗氧化的表現.......... 36
第三節 氧化酵素及脂質過氧化程度的表現............... 37
第四節 硝基酪胺酸蛋白的表現.......................... 38
第陸章 結論............................................ 39
參考文獻................................................ 40
中文部分............................................ 40
英文部分............................................ 40

中文部分
王恩華 (2005)。病理學。臺北:新文京開發。374-376。
許壬榮,呂學冠,謝錦城 (1998)。大鼠的漸增衰竭運動模式之研究。中華體育,12 (2),94-100。
陳銘峰、吳慧君、黃亦仁 (2004)。 24小時超級馬拉松跑隊選手腎臟功能之影響。運動生理暨體能學報,1, 43-53。
盧冠霖,胡明一,蔡宜容,黃慧貞,王玉文,王慈娟,陳昀佑,郭純琦,秦作威,張林松,林淑玟 合著 (2005)。實用人體解剖學 (Practical Human Anatomy)。臺中:華格納。

英文部分
Agarwal, R. & Light, R. (2008). Physical activity and hemodynamic reactivity in chronic kidney disease. Clinical Journal of the American Society of Nephrology, 3(6), 1660-1668.
Barbul, A. (1986). Arginine: biochemistry, physiology, and therapeutic implications. Journal of Parenteral and Enteral Nutrition, 10(2), 227-238.
Bendich, A. & Shapiro, S. (1986). Effect of β-Carotene and Canthaxanthin on the Immune Responses of the Rat. Journal of Nutrition, 116(11), 2254-2262.

Bissinger, R. L. (1995). Renal physiology Part 1: Structure and function. Neonatal Netw, 14(4), 9-20.
Boger, R. H., Bode-Boger, S. M., Mugge, A., Kienke, S., Brandes, R., Dwenger., A. & Frolich, J.C. (1995). Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis, 117(2), 273-284.
Brown, L. (2009). Arginine & exercise. Better Nutrition, 62(6), 30.
Chapman, C., Henschel, A., Minckler, J., Forsgren, A. & Keys, A. (1948). The effect of exercise on renal plasma flow in normal male subjects. Journal of Clinical Investigation, 27(5), 639-644
Chryssanthopoulos, C., Hennessy, L.C. & Williams, C. (1994). The influence of pre-exercise glucose ingestion on endurance running capacity. British Journal of Sports Medicine. 28(2), 105-109
Cross, J., Donald, A., Kharbanda, R., Deanfield, J., Woolfson, R. & MacAllister, R. (2001). Acute administration of L-arginine does not improve arterial endothelial function in chronic renal failure. Kidney International, 60(6), 2318-2323.
Daly, J., Reynolds, M. J., Thom, A., Kinsley, L., Dietrick-Gallagher, M., Shou, J. & Ruggieri, B. (1988). Immune and metabolic effects of arginine in the surgical patient. Annals of Surgery, 208(4), 512-523.
Davies, K., Quintanilha, A., Brooks, G. & Packer, L. (1982). Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, 107(4), 1198-1205.
Dillard, C., Litov, R., Savin, W., Dumelin, E. & Tappel, A. (1978). Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. Journal of Applied Physiology, 45(6), 927-932.
Dobretsov, G., Borschevskaya, T., Petrov, V. & Vladimirov, Y. (1977). The increase of phospholipid bilayer rigidity after lipid peroxidation. FEBS Letters, 84(1), 125-128
Elam, R., Hardin, D., Sutton, R. & Hagen, L. (1989). Effects of arginine and ornithine on strength, lean body mass and urinary hydroxyproline in adult males. The Journal of Sports Medicine and Physical Fitness, 29(1), 52-56.
Esson, M., & Schrier, R. (2002). Diagnosis and treatment of acute tubular necrosis. Annals of Internal Medicine, 137(9), 744-752
Evoy, D., Lieberman, M., Fahey III, T. J. & Daly, J. M. (1998). Immunonutrition: the role of arginine. Nutrition, 14(7-8), 611-617.
Fallon, K., Sivyer, G., Sivyer, K., & Dare, A. (1999). Changes in haematological parameters and iron metabolism associated with a 1600 kilometre ultramarathon. British Medical Journal, 33(1), 27-32.
Flohe, L., Beckmann, R., Giertz, H. & Loschen, G. (1985). Oxygen-centered free radicals as mediators of inflammation. Oxidative Stress, 405-437.
Fridovich, I., & Freeman, B. (1986). Antioxidant defenses in the lung. Annual Review of Physiology, 48(1), 693-702.
Gerard, J. & Luisiri, A. (1997). A fatal overdose of arginine hydrochloride. Clinical Toxicology, 35(6), 621-625.
Ghosh, S., Khazaei, M., Moien-Afshari, F., Ang, L. S., Granville, D. J., Verchere, C. B., Dunn, S. R., McCue, P., Mizisin, A., Sharma, K. & Laher, I. (2009). Moderate exercise attenuates caspase-3 activity, oxidative stress, and inhibits progression of diabetic renal disease in db/db mice. American Journal of Physiology- Renal Physiology, F700-F708.
Giordano, F. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation, 115(3), 500-508.
Giugliano, D. (2000). Dietary antioxidants for cardiovascular prevention. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 10(1), 38-44.
Halliwell, B. (2007). Biochemistry of oxidative stress. Biochemical Society Transactions, 35, 1147-1150.
Huang, H., Ma, M. & Chen, J. (2008). Chronic L-arginine administration increases oxidative and nitrosative stress in rat hyperoxaluric kidneys and excessive crystal deposition. American Journal of Physiology- Renal Physiology, F388-396.
Ide, T., Tsutsui, H., Kinugawa, S., Utsumi, H., Kang, D., Hattori, N., Uchida, K., Arimura, K., Egashira, K. & Takeshita, A. (1999). Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circulation Research, 85(4), 357-363.
Jenkins, R., Krause, K. & Schofield, L. (1993). Influence of exercise on clearance of oxidant stress products and loosely bound iron. Medicine & Science in Sports & Exercise, 25(2), 213-217.
Ji, L. (1993). Antioxidant enzyme response to exercise and aging. Medicine & Science in Sports & Exercise, 25(2), 225-231.
Jones, M. (1985). Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements. Journal of Nutrition, 115(4), 509-515.
Kemi, O., Haram, P., Wisloff, U. & Ellingsen, O. (2004). Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. Circulation, 109(23), 2897-2904.
Koyama, K., Kaya, M., Ishigaki, T., Tsujita, J., Hori, S., Seino, T. & Kasugai, A (1999). Role of xanthine oxidase in delayed lipid peroxidation in rat liver induced by acute exhausting exercise. European Journal of Applied Physiology and Occupational Physiology, 80(1), 28-33.
Lass, A., Suessenbacher, A., Wolkart, G., Mayer, B. & Brunner, F. (2002). Functional and analytical evidence for scavenging of oxygen radicals by L-arginine. Molecular Pharmacology, 61(5), 1081-1088
Levillain, O., Hus-Citharel, A., Morel, F. & Bankir, L. (1993). Arginine synthesis in mouse and rabbit nephron: localization and functional significance. American Journal of Physiology- Renal Physiology, 264(6), F1038-F1045.
Lin, W., Yang, S., Chen, K., Huang, C. & Lee, N. (2005). Protective effects of L-arginine on pulmonary oxidative stress and anti-oxidant defenses during exhaustive exercise in rats. Acta Pharmacologica Sinica, 26(8), 992-999.
Lin, W., Yang, S., Tsai, S., Huang, C. & Lee, N. (2006). L-Arginine attenuates xanthine oxidase and myeloperoxidase activities in hearts of rats during exhaustive exercise. British Journal of Nutrition, 95(01), 67-75.
Lucotti, P., Setola, E., Monti, L. D., Galluccio, E., Costa, S., Sandoli, E. P., Fermo, I., Rabaiotti, G., Gatti, R. & Piatti, P. (2006). Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. American Journal of Physiology- Endocrinology and Metabolism, 291(5), E906-E912.
Machlin, L. & Bendich, A. (1987). Free radical tissue damage: protective role of antioxidant nutrients. The FASEB Journal, 1(6), 441-445.
Maxwell, A., Ho, H., Le, C., Lin, P., Bernstein, D. & Cooke, J. (2001). L-arginine enhances aerobic exercise capacity in association with augmented nitric oxide production. Journal of Applied Physiology, 90(3), 933-948.
Mehta, R. L. (2003). Outcomes research in acute renal failure. Semin Nephrol, 23(3), 283-294.
Miwa, S. & Brand, M. (2003). Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochemical Society Transactions, 31, 1300-1301.
Murdoch, C., Zhang, M., Cave, A. & Shah, A. (2006). NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovascular Research, 71(2), 208-215.
Nakagawa, I., Takahashi, T., Suzuki, T. & Kobayashi, K. (1963). Amino acid requirements of children: minimal needs of tryptophan, arginine and histidine based on nitrogen balance method. Journal of Nutrition, 80(3), 305-310.
Nakano, D., Pollock, J. & Pollock, D. (2008). Renal medullary ETB receptors produce diuresis and natriuresis via NOS1. American Journal of Physiology- Renal Physiology, 294, F1205-F1211.
Nath, R., Kumar, D., Li, T. & Singal, P. (2000). Metallothioneins, oxidative stress and the cardiovascular system. Toxicology, 155(1-3), 17-26.
Noiri, E., Nakao, A., Uchida, K., Tsukahara, H., Ohno, M., Fujita, T., Brodsky, S., & Goligorsky, M. S. (2001). Oxidative and nitrosative stress in acute renal ischemia. American Journal of Physiology- Renal Physiology, 281(5), F948-F957.
Packer, L. (1997). Oxidants, antioxidant nutrients and the athlete. Journal of Sports Sciences, 15(3), 353-363.
Paddon-Jones, D., Borsheim, E. & Wolfe, R. (2004). Potential ergogenic effects of arginine and creatine supplementation. Journal of Nutrition, 134(10), 2888S-2895S.
Podhorska-Okolow, M., Dziegiel, P., Dolinska-Krajewska, B., Dumanska, M., Cegielski, M., Jethon, Z., Rossini, K., Carraro, U. & Zabel, M. (2006). Expression of metallothionein in renal tubules of rats exposed to acute and endurance exercise. Folia Histochem Cytobiol, 44(3), 195-200.
Powers, S. K. & Howley, E. T. (2005)。運動生理學 (Exercise Physiology) (林貴福、徐台閣、吳慧君 合譯)。臺北市:藝軒圖書。(原著於2001出版)
Rogers, Q. & Visek, W. (1985). Metabolic Role of Urea Cycle Intermediates: Nutritional and Clinical Aspects: Introduction. Journal of Nutrition, 115(4), 505-508.
Sen CK. (1999). Glutathione homeostasis in response to exercise training and nutritional supplements. Mol Cell Biochem. 6:31-42.
Scull, C. & Rose, W. (1930). Arginine metabolism. Journal of Biological Chemistry, 89(1), 109-123.
Sies, H. (1985). Oxidative stress: introductory remarks. Oxidative Stress, 1152, 617-631.
Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Experimental Physiology, 82(2), 291-305.
Sjodin, B., Hellsten, W. & Apple, F. (1990). Biochemical mechanisms for oxygen free radical formation during exercise. Sports Medicine, 10(4), 236-254.
Somani, S., Frank, S. & Rybak, L. (1995). Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacology Biochemistry and Behavior, 51(4), 627-634.
Suchner, U., Heyland, D. & Peter, K. (2002). Immune-modulatory actions of arginine in the critically ill. British Journal of Nutrition, 87(S1), 121-132.
Summar, M., Pietsch, J., Deshpande, J. & Schulman, G. (1996). Effective hemodialysis and hemofiltration driven by an extracorporeal membrane oxygenation pump in infants with hyperammonemia. The Journal of Pediatrics, 128(3), 379-382.
Tortora, G. J. & Grabowski, S. R. (2007)。簡明人體解剖學與生理學 (陳金山、徐淑媛 譯) 。臺北市:合記出版社。(原著於2007出版)
Toufektsian, M., Boucher, F., Tanguy, S., Morel, S. & de Leiris, J. (2001). Cardiac toxicity of singlet oxygen: implication in reperfusion injury. Antioxidants and Redox Signaling, 3(1), 63-69.
Villanueva, S., Cespedes, C., Gonzalez, A., Vio, C. & Velarde, V. (2007). Effect of ischemic acute renal damage on the expression of COX-2 and oxidative stress-related elements in rat kidney. American Journal of Physiology- Renal Physiology, 292(5), F1364-F1371.
Vina, J., Gimeno, A., Sastre, J., Desco, C., Asensi, M., Pallardo, F. V., Cuesta, A., Ferrero, J. A., Terada, L. S. & Repine, J. E. (2000). Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. Iubmb Life, 49(6), 539-544.
Wang, B., Singer, A., Tsao, P., Drexler, H., Kosek, J. & Cooke, J. (1994). Dietary arginine prevents atherogenesis in the coronary artery of the hypercholesterolemic rabbit. Journal of the American College of Cardiology, 23(2), 452-458.
Wang, T. (2002). Role of iNOS and eNOS in modulating proximal tubule transport and acid-base balance. American Journal of Physiology- Renal Physiology, 283(4), 658-626.
Wang, T., Inglis, F. & Kalb, R. (2000). Defective fluid and HCO3-absorption in proximal tubule of neuronal nitric oxide synthase-knockout mice. American Journal of Physiology- Renal Physiology, 279(3), F518-F524.
Wu, G. & Morris Jr, S. (1998). Arginine metabolism: nitric oxide and beyond. Biochemical Journal, 336(Pt 1), 1-17.
Xiao, D., Jiang, L., Che, L. & Lu, L. (2003). Nitric oxide and iron metabolism in exercised rat with L-arginine supplementation. Molecular and Cellular Biochemistry, 252(1), 65-72.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top