跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂宜蓁
研究生(外文):Yi-Chen Lu
論文名稱:自臭豆腐發酵液中篩選乳酸菌並評估其激活巨噬細胞之能力
論文名稱(外文):Enhanced Cytokines Secretion of Macrophage by Lactic Acid Bacteria Isolated from Stinky Tofu Fermented Broth
指導教授:蔡英傑蔡英傑引用關係
指導教授(外文):Ying-Chieh Tsai
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:86
中文關鍵詞:乳酸菌巨噬細胞RAW364.7細胞激素
外文關鍵詞:Lactic acid bacteriamacrophage RAW264.7ytokine
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1409
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
“臭豆腐”為我國特有的、並廣受歡迎的傳統發酵食品之一,全國各地(包含大陸地區)皆有。臭豆腐製造方式主要是將各種蔬菜、蝦仁、魚漿以及香料等材料加鹽醃漬,置於自然環境中任其腐敗發臭得到臭滷水(臭豆腐發酵液)後,將豆腐塊泡入其中,約發酵4~6 小時後撈起,將豆腐清洗一下,放於4 ℃待食用時取出。由於臭滷水是一個充滿動植物殘骸、分泌物、汁液以及缺氧的發酵環境,使其成為一個極適合乳酸菌生長的環境。直到目前為止,被廣為研究的乳酸菌主要還是來自動物腸道或乳汁,其他來源的乳酸菌則顯少見於文獻,然而自然界的環境相對於這些地方是一個營養成分比較貧脊,較不利於微生物生長的環境,因此推測由這些來源會有機會分離出更為特殊的乳酸菌。
因此本實驗的目的即是;第一,想從此種製法的臭滷水當中,篩選出乳酸菌,並觀察臭滷水在浸漬臭豆腐之前和之後菌相如何。第二,針對乳酸菌最被廣為研究的免疫調節活性利用RAW264.7這株小鼠巨噬細胞株對所篩到的乳酸菌進行in vitro的測試,用來評估這新來源的乳酸菌的獨特性。
本實驗中共從臭滷水中篩選到13株乳酸菌,其中10株是由未進泡過豆腐的臭滷水中篩選出來,其餘3株則由近泡過豆腐的臭滷水中篩得。菌株由是否加過豆腐的臭滷水中篩選出來的複雜性與優勢菌株完全不同,前者所得到的乳酸菌菌相較後這複雜。
而以小鼠巨噬細胞RAW 264.7被刺激而分泌的cytokine的方式來評估菌株特異性上,與之前主要由動物腸道或乳製品中篩選出乳酸菌的文獻比較,本實驗室篩選到的菌株,不論在對於能引發cytokine分泌的菌株或引發出的變化量上,都明顯比文獻所展示的結果來的多且來的複雜,因此此結果支持之前的假設並達到實驗目的。
Stinky tofu, a traditional and popular fermented food in Taiwan and the south of China is fermented by stinky brine that is prepared with mixtures of vegetables, shrimps and salt in a jar and spontaneously fermented at static station for several months. Once the brine has developed a unique stinky smell, tofu is submerged in the brine for 4-6 hours, washed with water and then kept at 4℃ until use. Because stinky brine is full of remains of plants and fermented at static condition, let it become a suitable environment for lactic acid bacteria (LAB) growing in. Until now, most of the studies were on the LAB isolated from animal and human sources, studies on the LAB isolated from other sources are rare. Because outside is aenviroments with poor nutrition, we expected to isolate new or better strains from other sources.
The aim in this study was to isolate LAB from stinky brine before or after adding tofu, and use macrophage as immunomodulatory activity screening platform to check whether screened LABs better or not?
In this study, we isolated 13 stains from stinky tofu, in which 10 strains isolated from before adding tofu and 3 strains isolated from after adding tofu. The strains were isolated from fromer is more complex and different from the latter.
In the macrophage model(RAW264.7)experiment, we isolated more stains which have ability to stimulate macrophage activation. The degree our strains stimulated was higher than the report which strains were isolated from human intertine or dairy food. This result suggested our hypothesis.
1. Johnson, T. & Case, C. Laboratory experiments in microbiology. The
Benjamin / Cummings Publoshing Co. Inc., (1995).
2. LILLY, D. M. & STILLWELL, R. H. PROBIOTICS:
GROWTH-PROMOTING FACTORS PRODUCED BY
MICROORGANISMS. Science 147, 747-748 (1965).
3. Parker RB Probiotics, the other half of the antibiotic story. Anim. Nutr. Health.
29, 4-8 (1974).
4. Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378
(1989).
5. Havenaar, R., J.H.J & Husis in't Veld The Lactic acid Bacteria. Wood, B.J.B.
ed., (1992).
6. Rambaud, J. C., Bouhnik, Y., Marteau, P. & Pochart, P. Manipulation of the
human gut microflora. Proc. Nutr. Soc. 52, 357-366 (1993).
7. O'sullivan, M., Thornton, G., Osullivan & Collins, J. Probiotic bacteria: myth
or reality. Trensd in Food and Technology 3, 309-314 (1992).
8. Salminen, S. Lactic Acid Bacteria. Marcel Dekkep, Inc., (1998).
9. Fuller, R. & Brooker, B. E. Lactobacilli which attach to the crop epithelium of
the fowl. Am. J. Clin. Nutr. 27, 1305-1312 (1974).
10. Coconnier, M. H., Lievin, V., Bernet-Camard, M. F., Hudault, S. & Servin, A.
L. Antibacterial effect of the adhering human Lactobacillus acidophilus strain
LB. Antimicrob. Agents Chemother. 41, 1046-1052 (1997).
11. Bernet-Camard, M. F. et al. The human Lactobacillus acidophilus strain LA1
secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo.
Appl. Environ. Microbiol. 63, 2747-2753 (1997).
12. Misra A.K & Kuila, R. K. Use of Bifidobacterium bifidum in the
manufacture of bifidus milk and int antibacterial activity. Lait. 72, 213-220
(1992).
13. Kociubinski, G., Perez, p., Annon, M. & De Antoni, G. A method of screening
of highly inhibitory lactic acid bacteria. J. food Prot. 59, 1-8 (1996).
14. Barefoot, S. F. & Nettles, C. G. Antibiosis revisited: bacteriocins produced by
dairy starter cultures. J. Dairy Sci. 76, 2366-2379 (1993).
15. Dahiya, R. S. & Speck, M. L. Hydrogen peroxide formation by lactobacilli
and its effect on Staphylococcus aureus. J. Dairy Sci. 51, 1568-1572 (1968).
16. Baig, M. I. & Prasad, V. Effect of incorporation of cattage cheese whey solids
and Bifidobacterium bifidum in freshly made yagurt. J. Dairy Res. 63,
73
467-473 (1996).
17. Bruno, MEC & Montville T.J Common mechanistic action of bacteriocins
from lactic acid nacteria. . Appl. Environ. Microbiol. 59, 3003-3010 (2005).
18. Fuller, R. Priniotic: the scientic basis. Champan and Hall, London (1992).
19. James, R., Lazdunski, G. & Pattus, F. Molecular properties of Lactobacillus
bacteriocins. Klaenhammer, T. R., Ahn, C., Fermaux, C. & Milton, K. (eds.),
pp. 37-581992).
20. Axelsson, L., Chung, T. C., Dobrogosz.W.J & Lindgern, S. Discovery of a
broad-spectrum antimicrobial substance provide by L. reuterii. Microbial.
Ecology in Health and Disease 2, 131-136 (1989).
21. du, T. M. et al. Characterisation and selection of probiotic lactobacilli for a
preliminary minipig feeding trial and their effect on serum cholesterol levels,
faeces pH and faeces moisture content. Int. J. Food Microbiol. 40, 93-104
(1998).
22. Gilliland, S. E. Beneficial interrelationships beyween certain microorganisms
and humans: candidate microorganisms for use as dietary adjunts. J. Food Prot
42, 164-167 (1979).
23. Gomez, Z. A., Kociubinski, G., Perez, P. & De, A. G. Isolation and
characterization of Bifidobacterium strains for probiotic formulation. J. Food
Prot 61, 865-873 (1998).
24. Savage, D. C. Mechanisms by which indigenous microorganisms colonize
gastrointestinal epithelial surfaces. Prog. Food Nutr. Sci. 7, 65-74 (1983).
25. Mayra-Makinen, A., Manninen, M. & Gyllenberg, H. The adherence of lactic
acid bacteria to the columnar epithelial cells of pigs and calves. J. Appl.
Bacteriol. 55, 241-245 (1983).
26. Schiffrin, E. J., Brassart, D., Servin, A. L., Rochat, F. & Donnet-Hughes, A.
Immune modulation of blood leukocytes in humans by lactic acid bacteria:
criteria for strain selection. Am. J. Clin. Nutr. 66, 515S-520S (1997).
27. Montes, R. G., Bayless, T. M., Saavedra, J. M. & Perman, J. A. Effect of milks
inoculated with Lactobacillus acidophilus or a yogurt starter culture in
lactose-maldigesting children. J. Dairy Sci. 78, 1657-1664 (1995).
28. Steiner, H., Schaffer, H., Lassmann, R., Staudach, A. & Batka, M.
[Comparison of biochemical and Doppler sonographic monitoring of high-risk
pregnancies]. Geburtshilfe Frauenheilkd. 51, 540-543 (1991).
29. Elmer, G. W., Surawicz, C. M. & McFarland, L. V. Biotherapeutic agents. A
neglected modality for the treatment and prevention of selected intestinal and
vaginal infections. JAMA 275, 870-876 (1996).
30. Sanders, M. E., Walker, D. C., Walker, K. M., Aoyama, K. & Klaenhammer, T.
R. Performance of commercial cultures in fluid milk applications. J. Dairy Sci.
74
79, 943-955 (1996).
31. Denter, J. & Bisping, B. Formation of B-vitamins by bacteria during the
soaking process of soybeans for tempe fermentation. Int. J. Food Microbiol.
22, 23-31 (1994).
32. Majamaa, H., Isolauri, E., Saxelin, M. & Vesikari, T. Lactic acid bacteria in the
treatment of acute rotavirus gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 20,
333-338 (1995).
33. Klaver, F. A. & van der, M. R. The assumed assimilation of cholesterol by
Lactobacilli and Bifidobacterium bifidum is due to their bile
salt-deconjugating activity. Appl. Environ. Microbiol. 59, 1120-1124 (1993).
34. Jin, L. Z., Ho, Y. W., Abdullah, N. & Jalaludin, S. Growth performance,
intestinal microbial populations, and serum cholesterol of broilers fed diets
containing Lactobacillus cultures. Poult. Sci. 77, 1259-1265 (1998).
35. Goldin, B. R. & Gorbach, S. L. The effect of milk and lactobacillus feeding on
human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 39, 756-761
(1984).
36. Schneider, K. T., Deckardt, R., Rust, M., Dumler, E. A. & Graeff, H. [Doppler
flow changes in maternal and fetal blood vessels before and during peridural
anesthesia]. Geburtshilfe Frauenheilkd. 51, 544-548 (1991).
37. Goldin, B. R., Gualtieri, L. J. & Moore, R. P. The effect of Lactobacillus GG
on the initiation and promotion of DMH-induced intestinal tumors in the rat.
Nutr. Cancer 25, 197-204 (1996).
38. Abbas, A. K., A.H.Lichtman & J.S.Pober Cellular and Molecular Immunology.
W.B. Saunders, Philadelphia (1997).
39. Perdigon, G., Alvarez, S., Rachid, M., Aguero, G. & Gobbato, N. Immune
system stimulation by probiotics. J. Dairy Sci. 78, 1597-1606 (1995).
40. Tannock, G. W. Probiotic properties of lactic-acid bacteria: plenty of scope for
fundamental R & D. Trends Biotechnol. 15, 270-274 (1997).
41. Hashimoto, S., Nomoto, K., Matsuzaki, T., Yokokura, T. & Mutai, M. Oxygen
radical production by peritoneal macrophages and Kupffer cells elicited with
Lactobacillus casei. Infect. Immun. 44, 61-67 (1984).
42. Hoijer, M. A., Melief, M. J., van Helden-Meeuwsen, C. G., Eulderink, F. &
Hazenberg, M. P. Detection of muramic acid in a carbohydrate fraction of
human spleen. Infect. Immun. 63, 1652-1657 (1995).
43. Link-Amster, H., Rochat, F., Saudan, K. Y., Mignot, O. & Aeschlimann, J. M.
Modulation of a specific humoral immune response and changes in intestinal
flora mediated through fermented milk intake. FEMS Immunol. Med.
Microbiol. 10, 55-63 (1994).
75
44. Lagrange, P. H. & Hurtrel, B. [Action of immunostimulants on phagocytosis
and derivative actions]. Comp Immunol. Microbiol. Infect. Dis. 9, 143-153
(1986).
45. Tizard, I. R. Vetrinary immunology. W.B. Saunders Company, Philadelphia
(1992).
46. Hatcher, G. E. & Lambrecht, R. S. Augmentation of macrophage phagocytic
activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy
Sci. 76, 2485-2492 (1993).
47. Adams D.O Macrophage activation in encyclopedia of immnuology.
Academic press., London (1992).
48. Rangavajhyala, N., Shahani, K. M., Sridevi, G. & Srikumaran, S.
Nonlipopolysaccharide component(s) of Lactobacillus acidophilus stimulate(s)
the production of interleukin-1 alpha and tumor necrosis factor-alpha by
murine macrophages. Nutr. Cancer 28, 130-134 (1997).
49. Marin, M. L., Lee, J. H., Murtha, J., Ustunol, Z. & Pestka, J. J. Differential
cytokine production in clonal macrophage and T-cell lines cultured with
bifidobacteria. J. Dairy Sci. 80, 2713-2720 (1997).
50. Kimura, K., McCartney, A. L., McConnell, M. A. & Tannock, G. W. Analysis
of fecal populations of bifidobacteria and lactobacilli and investigation of the
immunological responses of their human hosts to the predominant strains.
Appl. Environ. Microbiol. 63, 3394-3398 (1997).
51. Miettinen, M., Vuopio-Varkila, J. & Varkila, K. Production of human tumor
necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic
acid bacteria. Infect. Immun. 64, 5403-5405 (1996).
52. Kato, I., Yokokura, T. & Mutai, M. Correlation between increase in Ia-bearing
macrophages and induction of T cell-dependent antitumor activity by
Lactobacillus casei in mice. Cancer Immunol. Immunother 26, 215-221
(1988).
53. Kato, I., Endo, K. & Yokokura, T. Effects of oral administration of
Lactobacillus casei on antitumor responses induced by tumor resection in mice.
Int. J. Immunopharmacol. 16, 29-36 (1994).
54. Isolauri, E. et al. Diet during rotavirus enteritis affects jejunal permeability to
macromolecules in suckling rats. Pediatr. Res. 33, 548-553 (1993).
55. Ohta, E. et al. Malformation of immature starfish oocytes by
theonellapeptolide Ie, a Tridecapeptide lactone from a marine sponge Petrosia
species, through disturbance of cortical F-actin distribution. Biosci. Biotechnol.
Biochem. 67, 1908-1915 (2003).
56. Perdigon, G., Nader de Macias, M. E., Alvarez, S., Oliver, G. & Pesce de Ruiz
Holgado AA Prevention of gastrointestinal infection using immunobiological
methods with milk fermented with Lactobacillus casei and Lactobacillus
76
acidophilus. J. Dairy Res. 57, 255-264 (1990).
57. Tomioka, H. et al. Effector molecules of the host defence mechanism against
Mycobacterium avium complex: the evidence showing that reactive oxygen
intermediates, reactive nitrogen intermediates, and free fatty acids each alone
are not decisive in expression of macrophage antimicrobial activity against the
parasites. Clin. Exp. Immunol. 109, 248-254 (1997).
58. Yamaguchi, Y. et al. [Skin reaction to OK-432 and its dosage for locoregional
administration]. Gan To Kagaku Ryoho 21, 2108-2110 (1994).
59. Takahashi, T. et al. Antitumor effects of the intravesical instillation of heat
killed cells of the Lactobacillus casei strain Shirota on the murine orthotopic
bladder tumor MBT-2. J. Urol. 166, 2506-2511 (2001).
60. Shu-Fen Lee, Shou-Ching Yu, Han-Han Chou & Fwu-Ling Lee Optimal
Conditions for Ammonia Production of Stinky Brine, the Fermented Broth
Used to Make Stinky Tofu. Tawinese Journal of Argicultural Chemistry and
Food Science 39, 162-164 (2001).
61. Su, Y. C. Traditional fermented foods in Taiwan., p. 15 (Food Industry
Research and Development Institute, Hsinchu, Taiwan,1980).
62. Salminen, S., Isolauri, E. & Salminen, E. Clinical uses of probiotics for
stabilizing the gut mucosal barrier: successful strains and future challenges.
Antonie Van Leeuwenhoek 70, 347-358 (1996).
63. Sanae Okada. Lactic Acid Bacteria of Plant Origin : Characteristics and
Applications. 2nd Asian Conference on Lactic Acid Bacteria , 29. 2003.
Ref Type: Conference Proceeding
64. Akopyanz, N., Bukanov, N. O., Westblom, T. U., Kresovich, S. & Berg, D. E.
DNA diversity among clinical isolates of Helicobacter pylori detected by
PCR-based RAPD fingerprinting. Nucleic Acids Res. 20, 5137-5142 (1992).
65. Marin, M. L. et al. Stimulation of cytokine production in clonal macrophage
and T-cell models by Streptococcus thermophilus: comparison with
Bifidobacterium sp. and Lactobacillus bulgaricus. J. Food Prot. 61, 859-864
(1998).
66. Tejada-Simon, M. V. & Pestka, J. J. Proinflammatory cytokine and nitric oxide
induction in murine macrophages by cell wall and cytoplasmic extracts of
lactic acid bacteria. J. Food Prot. 62, 1435-1444 (1999).
67. Kimoto, H., Mizumachi, K., Okamoto, T. & Kurisaki, J. New Lactococcus
strain with immunomodulatory activity: enhancement of Th1-type immune
response. Microbiol. Immunol. 48, 75-82 (2004).
68. Welsh, J. & McClelland, M. Fingerprinting genomes using PCR with arbitrary
primers. Nucleic Acids Res. 18, 7213-7218 (1990).
69. Welsh, J. et al. Genomic fingerprinting by arbitrarily primed polymerase chain
77
reaction resolves Borrelia burgdorferi into three distinct phyletic groups. Int. J.
Syst. Bacteriol. 42, 370-377 (1992).
70. Corsetti, A. et al. Characterization of sourdough lactic acid bacteria based on
genotypic and cell-wall protein analyses. J. Appl. Microbiol. 94, 641-654
(2003).
71. Hur, H. J., Lee, K. W. & Lee, H. J. Production of nitric oxide, tumor necrosis
factor-alpha and interleukin-6 by RAW264.7 macrophage cells treated with
lactic acid bacteria isolated from kimchi. Biofactors 21, 123-125 (2004).
72. Pena, J. A. & Versalovic, J. Lactobacillus rhamnosus GG decreases TNF-alpha
production in lipopolysaccharide-activated murine macrophages by a
contact-independent mechanism. Cell Microbiol. 5, 277-285 (2003).
73. Degeest, B. Applications of probiotics. Meded. Rijksuniv. Gent Fak.
Landbouwkd. Toegep. Biol. Wet. 66, 557-561 (2001).
74. Yasui, H., Shida, K., Matsuzaki, T. & Yokokura, T. Immunomodulatory
function of lactic acid bacteria. Antonie Van Leeuwenhoek 76, 383-389 (1999).
75. Matsuzaki, T. Immunomodulation by treatment with Lactobacillus casei strain
Shirota. Int. J. Food Microbiol. 41, 133-140 (1998).
76. Fang, H., Elina, T., Heikki, A. & Seppo, S. Modulation of humoral immune
response through probiotic intake. FEMS Immunol. Med. Microbiol. 29, 47-52
(2000).
77. Tannock, G. W. Probiotic properties of lactic acid bacteria: plenty of scope for
fundamental R and D . Tibtech 6, 270-274 (1997).
78. De Simone C. et al. The adjuvant effect of yagurt on production of
gamma-inteferon by Con A-stimulated human peripheral blood lymphocytes.
Nutr. Rep. Int. 3, 419-431 (1986).
79. Halpern, G. M., K.G.Vruwing, J.Van de Water, C.L.Keen & M.E.Gershwin
Influence of long-term yogurt consumption in young adults. Int. J.
Immunother 7, 205-210 (1991).
80. Muscettola, M., Massai, L., Tanganelli, C. & Grasso, G. Effects of lactobacilli
on interferon production in young and aged mice. Ann. N. Y. Acad. Sci. 717,
226-232 (1994).
81. Muller-Alouf, H. et al. Comparative study of cytokine release by human
peripheral blood mononuclear cells stimulated with Streptococcus pyogenes
superantigenic erythrogenic toxins, heat-killed streptococci, and
lipopolysaccharide. Infect. Immun. 62, 4915-4921 (1994).
82. Muscettola, M., Massai, L., Tanganelli, C. & Grasso, G. Effects of lactobacilli
on interferon production in young and aged mice. Ann. N. Y. Acad. Sci. 717,
226-232 (1994).
78
83. Kitazawa, H. et al. Expression of mRNA encoding IFN alpha in macrophages
stimulated with Lactobacillus gasseri. FEMS Microbiol. Lett. 120, 315-321
(1994).
84. He, F. et al. Stimulation of the secretion of pro-inflammatory cytokines by
Bifidobacterium strains. Microbiol. Immunol. 46, 781-785 (2002).
85. Morita, H. et al. Cytokine production by the murine macrophage cell line
J774.1 after exposure to lactobacilli. Biosci. Biotechnol. Biochem. 66,
1963-1966 (2002).
86. Perdigon, G., Maldonado, G. C., Valdez, J. C. & Medici, M. Interaction of
lactic acid bacteria with the gut immune system. Eur. J. Clin. Nutr. 56 Suppl 4,
S21-S26 (2002).
87. Janeway Travers, Walport & Shlomchik Immunology: the immune system in
health and disease. Garland Science Publishing, New York, USA (2005).
88. Une, C. et al. Enhancement of natural killer (NK) cell cytotoxicity and
induction of NK cell-derived interferon-gamma (IFN-gamma) display
different kinetics during experimental infection with Trypanosoma cruzi. Clin.
Exp. Immunol. 121, 499-505 (2000).
89. Matsuzaki, T. & Chin, J. Modulating immune responses with probiotic
bacteria. Immunol. Cell Biol. 78, 67-73 (2000).
90. Kato, I., Tanaka, K. & Yokokura, T. Lactic acid bacterium potently induces the
production of interleukin-12 and interferon-gamma by mouse splenocytes. Int.
J. Immunopharmacol. 21, 121-131 (1999).
91. Trinchieri, G. Proinflammatory and immunoregulatory functions of
interleukin-12. Int. Rev. Immunol. 16, 365-396 (1998).
92. Peleman, R., Wu, J., Fargeas, C. & Delespesse, G. Recombinant interleukin 4
suppresses the production of interferon gamma by human mononuclear cells. J.
Exp. Med. 170, 1751-1756 (1989).
93. Pene, J. et al. IgE production by normal human lymphocytes is induced by
interleukin 4 and suppressed by interferons gamma and alpha and
prostaglandin E2. Proc. Natl. Acad. Sci. U. S. A 85, 6880-6884 (1988).
94. Gascan, H. et al. Human B cell clones can be induced to proliferate and to
switch to IgE and IgG4 synthesis by interleukin 4 and a signal provided by
activated CD4+ T cell clones. J. Exp. Med. 173, 747-750 (1991).
95. Liblau, R. S., Singer, S. M. & McDevitt, H. O. Th1 and Th2 CD4+ T cells in
the pathogenesis of organ-specific autoimmune diseases. Immunol. Today 16,
34-38 (1995).
96. Powrie, F. & Coffman, R. L. Cytokine regulation of T-cell function: potential
for therapeutic intervention. Immunol. Today 14, 270-274 (1993).
79
97. R.Fuller & G.Perdigon Probiotics 3: Immunemodulatory by the Gut Microflora
and Probiotics. Kluwer Academic Piblishers, London/Boston/Dordrecht
(2000).
98. Coffman, R. L. Mechanisms of helper T-cell regulation of B-cell activity. Ann.
N. Y. Acad. Sci. 681, 25-28 (1993).
99. O'Garra, A. Cytokines induce the development of functionally heterogeneous
T helper cell subsets. Immunity. 8, 275-283 (1998).
100. Scott, B. et al. A role for non-MHC genetic polymorphism in susceptibility to
spontaneous autoimmunity. Immunity. 1, 73-83 (1994).
101. O'Garra, A. & Murphy, K. T-cell subsets in autoimmunity. Curr. Opin.
Immunol. 5, 880-886 (1993).
102. Matsuzaki, T. Immunomodulation by treatment with Lactobacillus casei strain
Shirota. Int. J. Food Microbiol. 41, 133-140 (1998).
103. Matsushima, K. et al. Stimulation of interleukin-6 production in human dental
pulp cells by peptidoglycans from Lactobacillus casei. J. Endod. 24, 252-255
(1998).
104. Kato, I., Endo-Tanaka, K. & Yokokura, T. Suppressive effects of the oral
administration of Lactobacillus casei on type II collagen-induced arthritis in
DBA/1 mice. Life Sci. 63, 635-644 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top